Citation: | NIU Wenyu, LIANG Maohan, LIU Wen, XIONG Shengwu. A Method for Clustering Ship Trajectory through Extracting Multiple Feature Points[J]. Journal of Transport Information and Safety, 2023, 41(1): 62-74. doi: 10.3963/j.jssn.1674-4861.2023.01.007 |
[1] |
马文耀, 吴兆麟, 李伟峰. 船舶异常行为的一致性检测算法[J]. 交通运输工程学报, 2017, 17(5): 149-158. doi: 10.3969/j.issn.1671-1637.2017.05.014
MA W Y, WU Z L, LI W F. Conformal detection algorithm of anomalous behaviors of vessel[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 149-158. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.05.014
|
[2] |
计科峰, 赵和鹏, 邢相薇, 等. 小卫星载AIS海洋监视技术研究进展[J]. 雷达科学与技术, 2013, 11(1): 9-15. doi: 10.3969/j.issn.1672-2337.2013.01.002
JI K F, ZHAO H P, XING X W, et al. Review and assessment of maritime surveillance based on small satellite-based AIS[J]. Radar Science and Technology, 2013, 11(1): 9-15. (in Chinese) doi: 10.3969/j.issn.1672-2337.2013.01.002
|
[3] |
陈影玉, 杨神化, 索永峰. 船舶行为异常检测研究进展[J]. 交通信息与安全, 2020, 38(5): 1-11. doi: 10.3963/j.jssn.1674-4861.2020.05.001
CHEN Y Y, YANG S H, SUO Y F. Research progress of ship behavior anomaly detection[J]. Journal of Transport Information and Safety, 2020, 38(5): 1-11. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.05.001
|
[4] |
MURRAY B, PERERA L P. Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness[J]. Journal of Ocean Engineering and Science, 2022, 7(1): 1-13. doi: 10.1016/j.joes.2021.03.001
|
[5] |
王天真, 刘萍, 汤天浩, 等. 一种基于k-means聚类的航运信息孤立点分析算法[J]. 上海海事大学学报, 2011, 32(3): 54-57. doi: 10.3969/j.issn.1672-9498.2011.03.011
WANG T Z, LIU P, TANG T H, et al. Outlier detection algorithm for maritime information based on k-means clustering[J]. Journal of Shanghai Maritime University, 2011, 32 (3): 54-57. (in Chinese) doi: 10.3969/j.issn.1672-9498.2011.03.011
|
[6] |
陈德军, 刘冬, 郭南彬, 等. 基于层次聚类自动巡航的港区船舶碰撞危险识别方法研究[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(1): 12-16. doi: 10.3963/j.issn.2095-3844.2017.01.003
CHEN D J, LIU D, GUO N B, et al. Research on ship collision risk identification in port area based on AGNES automatic patrol[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2017, 41(1): 12-16. (in Chinese) doi: 10.3963/j.issn.2095-3844.2017.01.003
|
[7] |
周世波, 徐维祥. 密度峰值快速搜索与聚类算法及其在船舶位置数据分析中的应用[J]. 仪器仪表学报, 2018, 39(7): 152-163. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201807019.htm
ZHOU S B, XU W X. Clustering by fast search and find of density peaks and its application in ship location data analysis[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 152-163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201807019.htm
|
[8] |
SHENG K, Liu Z, Zhou D C, et al. Research on ship classification based on trajectory features[J]. Journal of Navigation 1-17, 2018, 71(1): 100-116. doi: 10.1017/S0373463317000546
|
[9] |
刘磊, 初秀民, 蒋仲廉, 等. 基于KNN的船舶轨迹分类算法[J]. 大连海事大学学报, 2018, 44(3): 15-21.
LIU L, CHU X M, JIANG Z L, et al. Ship trajectory classification algorithm based on KNN[J]. Journal of Dalian Maritime University, 2018, 44(3): 15-21. (in Chinese)
|
[10] |
马文耀, 吴兆麟, 杨家轩, 等. 基于单向距离的谱聚类船舶运动模式辨识[J]. 重庆交通大学学报(自然科学版), 2015, 34(5): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201505026.htm
MA W Y, WU Z L, YANG J X, et al. Vessel motion pattern recognition based on one-way distance spectral clustering algorithm[J]. Journal of Chongqing Jiaotong University(Natural Science), 2015, 34(5): 130-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201505026.htm
|
[11] |
LI H H, LIU J X, Liu W, et al. A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis[J]. Sensors, 2017, 17(8): 1792. doi: 10.3390/s17081792
|
[12] |
ZHAO L B, SHI G Y. A novel similarity measure for clustering vessel trajectories based on dynamic time warping[J]. The Journal of Navigation, 2019, 72(2): 290-306. doi: 10.1017/S0373463318000723
|
[13] |
牟军敏, 陈鹏飞, 贺益雄, 等. 船舶AIS轨迹快速自适应谱聚类算法[J]. 哈尔滨工程大学学报, 2018, 39(3): 438-433.
MOU J M, CHEN P F, HE Y X, et al. Fast self-tuning spectral clustering algorithm for AIS ship trajectory[J]. Journal of Harbin Engineering University, 2018, 39(3): 438-433. (in Chinese)
|
[14] |
赵梁滨, 史国友, 杨家轩. 基于DBSCAN算法的船舶轨迹自适应层次聚类[J]. 中国航海, 2018, 41(3): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201803011.htm
ZHAO L B, SHI G Y, YANG J X. Adaptive hierarchical clustering of ship trajectory with DBSCAN algorithm[J]. Navigation of China, 2018, 41(3): 54-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201803011.htm
|
[15] |
SHENG P, YIN J B. Extracting shipping route patterns by trajectory clustering model based on automatic identification system data[J]. Sustainability, 2018, 10(7): 2327.
|
[16] |
彭祥文, 高曙, 初秀民, 等. 基于Spark的船舶航行轨迹聚类方法[J]. 中国航海, 2017, 40(3): 49-53+68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201703011.htm
PENG X W, GAO S, CHU X M, et al. Clustering method of ship's navigation trajectory set based on Spark[J]. Navigation of China, 2017, 40(3): 49-53+68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201703011.htm
|
[17] |
YAO D, ZHANG C, ZHU Z H, et al. Learning deep representation for trajectory clustering[J]. Expert Systems, 2018, 35(2): e12252.
|
[18] |
甄荣, 邵哲平, 潘家财. 基于AIS数据的船舶行为特征挖掘与预测: 研究进展与展望[J]. 地球信息科学学报, 2021, 23(12): 2111-2127. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202112002.htm
ZHEN R, SHAO Z P, PAN J C. Advance in character mining and prediction of ship behavior based on AIS data[J]. Journal of Geo-information Science, 2021, 23(12): 2111-2127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202112002.htm
|
[19] |
江玉玲, 熊振南, 唐基宏. 基于轨迹段DBSCAN的船舶轨迹聚类算法[J]. 中国航海, 2019, 42(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201903001.htm
JIANG Y L, XIONG Z N, TANG J H. Ship trajectory clustering algorithm based on DBSCAN[J]. Navigation of China, 2019, 42(3): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201903001.htm
|
[20] |
郭昊. 基于AIS数据的轨迹段聚类方法研究[D]. 南京: 南京信息工程大学, 2021.
GUO H. Research on clustering method of trajectory segment based on AIS data[D]. Nanjing: Nanjing University of Information Technology, 2021. (in Chinese)
|
[21] |
李雨潇, 吴传生, 刘文, 等. 仿射传播和谱聚类的船舶轨迹聚类[J]. 河南科技大学学报(自然科学版), 2018, 39(1): 35-40+6. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201801007.htm
LI Y X, WU C S, LIU W, et al. Trajectory clustering based on affine propagation and spectral clustering[J]. Journal of Henan University of Science and Technology(Natural Science), 2018, 39(1): 35-40+6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201801007.htm
|
[22] |
ZHAO L B, SHI G Y. A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition[J]. Ocean Engineering, 2019, 172: 456-467.
|
[23] |
王太正. 基于卷积自编码器的船舶AIS轨迹聚类[D]. 海口: 海南大学, 2020.
WANG T Z. Ship AIS trajectory clustering based on convolutional autoencoder[D]. Haikou: Hainan University, 2020. (in Chinese)
|
[24] |
ZHAO L B, SHI G Y, YANG J X. Ship trajectories pre-processing based on AIS data[J]. The Journal of Navigation, 2018, 71(5): 1210-1230.
|
[25] |
周世波, 熊振南. 基于局部密度的成山角船舶交通流特征分析[J]. 大连海事大学报, 2019, 45(3): 100-105.
ZHOU S B, XIONG Z N. Characteristic analysis of ship traffic flow at Chengshanjiao based on local density[J]. Journal of Dalian Maritime University, 2019, 45(3): 100-105. (in Chinese)
|
[26] |
朱连江, 马炳先, 赵学泉. 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010, 30(2): 139-141+198.
ZHU L J, MA B X, ZHAO X Q. Clustering validity analysis based on silhouette coefficient[J]. Journal of Computer Applications, 2010, 30(2): 139-141+198. (in Chinese)
|
[27] |
朱秋圳, 邬群勇, 姚铖鑫, 孙豪宇. 基于DBI和稀疏轨迹数据的交通状态精细划分与识别[J]. 地球信息科学学报, 2022, 24(3): 458-468.
ZHU Q Z, WU Q Y, YAO C X, SUN H Y. Fine classification and identification of traffic states based on DBI and sparse trajectory data[J]. Journal of Geo-information Science, 2022, 24(3): 458-468. (in Chinese)
|