Citation: | HU Zhaozheng, CHEN Qili, MENG Jie, HU Huahua, ZHANG Jianan. Multi-LiDAR Roadside Intelligent Perception Method Fusing High-Definition Map[J]. Journal of Transport Information and Safety, 2024, 42(3): 42-52. doi: 10.3963/j.jssn.1674-4861.2024.03.005 |
[1] |
张亚勤, 李震宇, 尚国斌, 等. 面向自动驾驶的车路云一体化框架[J]. 汽车安全与节能学报, 2023, 14(3): 249-273. doi: 10.3969/j.issn.1674-8484.2023.03.001
ZHANG Y Q, LI Z Y, SHANG G B, et al. A unified framework for vehicle-infrastructure-cloud autonomous driving[J]. Journal of Automotive Safety and Energy Saving, 2023, 14(3): 249-273. (in Chinese) doi: 10.3969/j.issn.1674-8484.2023.03.001
|
[2] |
辜志强, 吉鑫钰, 褚端峰, 等. 基于全局位置精度损失最小化的路侧多传感器目标关联匹配方法[J]. 中国公路学报, 2022, 35(3): 286-294.
GU Z Q, JI X Y, CHU D F, et al. A roadside multi-sensor target association matching method based on minimization of global position precision loss[J]. China Journal of Highway and Transport, 2022, 35(3): 286-294. (in Chinese)
|
[3] |
任柯燕, 谷美颖, 袁正谦, 等. 自动驾驶3D目标检测研究综述[J]. 控制与决策, 2023, 38(4): 865-889.
REN K Y, GU M Y, YUAN Z Q, et al. 3D object detection algorithms in autonomous driving: a review[J]. Control and Decision, 2023, 38(4): 865-889. (in Chinese)
|
[4] |
BELTRAN J, GUNIDEL C, MORENO F M, et al. BirdNet: a 3D object detection framework from LiDAR information[C]. 21st International Conference on Intelligent Transportation Systems(ITSC). Maui, HI: IEEE, 2018.
|
[5] |
孙挺, 齐迎春, 耿国华. 基于帧间差分和背景差分的运动目标检测算法[J]. 吉林大学学报(工学版), 2016, 46(4): 1325-1329.
SUN T, QI Y C, GENG G H. Moving object detection algorithm based on frame difference and background subtraction[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(4): 1325-1329. (in Chinese)
|
[6] |
ZHANG Z, ZHENG J, XU H, et al. Automatic background construction and object detection based on roadside LiDAR[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4086-4097. doi: 10.1109/TITS.2019.2936498
|
[7] |
李杰, 张洛维, 王晓燕, 等. 基于视锥距离和自适应权重卡尔曼滤波的多传感器融合算法[J]. 中国公路学报, 2024, 37: 194-203.
LI J, ZHANG L W, WANG X Y, et al. A multi-sensor fusion algorithm based on view-cone distance and adaptive weighted Kalman filter[J]. China Journal of Highway and Transport, 2024, 37: 194-203. (in Chinese)
|
[8] |
徐国艳, 牛欢, 郭宸阳, 等. 基于三维激光点云的目标识别与跟踪研究[J]. 汽车工程, 2020, 42(1): 38-46.
XU G Y, NIU H, GUO C Y, et al. Research on target recognition and tracking based on 3D laser point cloud[J]. Automotive Engineering, 2020, 42(1): 38-46. (in Chinese)
|
[9] |
ZHAO J, XU H, LIU H, et al. Detection and tracking of pedestrians and vehicles using roadside LiDAR sensors[J]. Transportation Research Part C: Emerging Technologies, 2019, 100: 68-87. doi: 10.1016/j.trc.2019.01.007
|
[10] |
LIN C, WANG Y, GONG B, et al. Vehicle detection and tracking using low-channel roadside LiDAR[J]. Measurement, 2023, 218: 113159.
|
[11] |
YANG B, LIANG M, URTASUN R. HDNET: exploiting HD maps for 3D object detection[C]. 2nd Conference on Robot Learning, Zürich, Switzerland: PMLR, : 2018.
|
[12] |
杨振凯, 华一新, 訾璐, 等. 浅析高精度地图发展现状及关键技术[J]. 测绘通报, 2021(6): 54-60.
YANG Z K, HUA Y X, ZI L, et al. Analysis of the development status and key technologies of high-precision map[J]. Bulletin of Surveying and Mapping, 2021(6): 54-60. (in Chinese)
|
[13] |
SEIF H G, HU X. Autonomous driving in the ICity—HD maps as a key challenge of the automotive industry[J]. Engineering, 2016, 2(2): 159-162.
|
[14] |
MA W C, URTASUN R, TARTAVULL I, et al. Exploiting sparse semantic HD maps for self-driving vehicle localization[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Macau, China: IEEE, 2019.
|
[15] |
CAI H, HU Z, HUANG G, et al. Integration of GPS, monocular vision, and high definition(HD)map for accurate vehicle localization[J]. Sensors, 2018, 18(10): 3270.
|
[16] |
GHALLABI F, NASHASHIBI F, EI-HAJ-SHHADE G, et al. LiDAR-based lane marking detection for vehicle positioning in an HD map[C]. 21st International Conference on Intelligent Transportation Systems(ITSC). Maui, HI: IEEE, 2018.
|
[17] |
胡钊政, 孙勋培, 张佳楠, 等. 基于时空图模型的车-路-图协同定位方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1246-1257.
HU Z Z, SUN X P, ZHANG J N, et al. Vehicle-infrastructure-map cooperative localization method based on spatial-temporal graph model[J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1246-1257. (in Chinese)
|
[18] |
BAUER S, ALKHORSHID Y, WANIELIK G. Using high-definition maps for precise urban vehicle localization[C]. 19th International Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro, Brazil: IEEE, 2016.
|
[19] |
JIANG K, YAND D, LIU C, et al. A flexible multi-layer map model designed for lane-level route planning in autonomous vehicles[J]. Engineering, 2019, 5(2): 305-318.
|
[20] |
王丞, 田暄, 郭瑞, 等. 自适应Harris角点提取的点云粗配准算法[J]. 西安交通大学学报, 2022, 56(3): 33-44.
WANG C, TIAN X, GUO R, et al. Coarse point cloud registration based on adaptive Harris corner extraction[J]. Journal of Xi'an Jiaotong University, 2022, 56(3): 33-44. (in Chinese)
|
[21] |
叶雅欣, 王佳盛, 吴烽云, 等. 消毒机器人目标识别定位与包围盒优化[J]. 激光与光电子学进展, 2022, 59(4): 346-354.
YE Y X, WANG J S, WU F Y, et al. Target recognition and localization, bounding box optimization of disinfection robot[J]. Laser & Optoelectronics Progress, 2022, 59(4): 346-354. (in Chinese)
|
[22] |
赵洲, 黄攀峰, 陈路. 1种融合卡尔曼滤波的改进时空上下文跟踪算法[J]. 航空学报, 2017, 38(2): 274-284.
ZHAO Z, HUANG P F, CHEN L. An improved spatiotemporal context tracking algorithm fused with Kalman filter[J]. Journal of Aeronautics, 2017, 38(2): 274-284. (in Chinese)
|
[23] |
DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: An open urban driving simulator[C]. The First Annual Conference on Robot. Machine Learning, Mountain View, California: PMLR, 2017.
|