A Prediction Model of Short-term Passenger Flow for Urban Transit Hubs
-
摘要: 客流量的预测对交通枢纽内部组织方案和应急预案的调整起着重要作用,为了更为精确地对交通枢纽短期的客流量进行预测分析,通过分析交通枢纽客流量的变化特点,对比各种预测方法的优缺点,建立了综合BP神经网络和最小二乘支持向量机的组合预测模型,通过BP神经网络初步预测,再利用最小二乘支持向量机的修正,完成对交通枢纽客流量的预测。实际数据验证表明,相比单一的预测模型,文内提出的模型能够将交通枢纽的客流量的预测精度提高约1%,表明论文中方法能够克服单一模型带来的不确定性。Abstract: Accurate prediction of the passenger flow plays a very important role in preparing advanced organization schemes and contingency plans for urban transit hubs .Therefore ,a combinational prediction model based on BP neural network and Least Squares Support Vector Machine (LSSVM ) is proposed in this paper .First ,a BP neural network is a-dopted to present an initial prediction based on the historical passenger volume .Then ,the LSSVM model is used to refine the "initial prediction"to reach the final predicted passenger volumes at urban transit hubs .The experiment results of this paper show that the proposed model can improve the prediction accuracy of the passenger flows at urban transit hubs by 1% ,which shows that the model in this paper can overcome the uncertainty caused by a single model .
-
Key words:
- passenger flow /
- BP neutral network /
- LSSVM /
- combinational prediction
点击查看大图
计量
- 文章访问数: 373
- HTML全文浏览量: 66
- PDF下载量: 2
- 被引次数: 0