Research Progress of Ship Behavior Anomaly Detection
-
摘要: 船舶行为异常检测对于海上安全、海域的智能监管具有重要意义.异常检测算法不能满足轨迹大数据挖掘在实时性、准确性和鲁棒性等方面的需求.将异常行为进行分类,分析目前几类主要的异常检测方法:统计分析在对数据分布做出正确假设时根据概率分布获取异常情况,确定合适的异常阈值较为困难;预测法基于对历史数据的了解程度,易受多种因素影响;机器学习依赖数据特征、计算复杂度高.基于此,总结可能提高统计分析、机器学习和预测法检测效果的方法,指出将在线实时检测引入船舶检测,并展望数据处理、轨迹表示、挖掘分析和情境语义在异常检测中的可能研究方向.
点击查看大图
计量
- 文章访问数: 894
- HTML全文浏览量: 139
- PDF下载量: 20
- 被引次数: 0