留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模型预测控制的船舶纵向航速协同控制方法

吴文祥 初秀民 柳晨光 毛文刚

吴文祥, 初秀民, 柳晨光, 毛文刚. 基于模型预测控制的船舶纵向航速协同控制方法[J]. 交通信息与安全, 2021, 39(1): 52-63. doi: 10.3963/j.jssn.1674-4861.2021.01.0007
引用本文: 吴文祥, 初秀民, 柳晨光, 毛文刚. 基于模型预测控制的船舶纵向航速协同控制方法[J]. 交通信息与安全, 2021, 39(1): 52-63. doi: 10.3963/j.jssn.1674-4861.2021.01.0007
WU Wenxiang, CHU Xiumin, LIU Chenguang, MAO Wengang. A Coordinated Control Method of Longitudinal Ship Speed Based on Model Predictive Control[J]. Journal of Transport Information and Safety, 2021, 39(1): 52-63. doi: 10.3963/j.jssn.1674-4861.2021.01.0007
Citation: WU Wenxiang, CHU Xiumin, LIU Chenguang, MAO Wengang. A Coordinated Control Method of Longitudinal Ship Speed Based on Model Predictive Control[J]. Journal of Transport Information and Safety, 2021, 39(1): 52-63. doi: 10.3963/j.jssn.1674-4861.2021.01.0007

基于模型预测控制的船舶纵向航速协同控制方法

doi: 10.3963/j.jssn.1674-4861.2021.01.0007
基金项目: 

国家重点研发计划项目 2018YFB1600404

国家自然科学基金项目 51779202

国家自然科学基金项目 52001240

湖北省自然科学基金项目 2020CFB307

绿色智能内河船舶创新专项项目 装函(2019)358号

详细信息
    作者简介:

    吴文祥(1996—),硕士研究生.研究方向:船舶智能航行控制;E-mail:wuwenxiang@whut.edu.cn

    通讯作者:

    柳晨光(1988—),博士,副研究员.研究方向:船舶智能航行控制;E-mail:liuchenguang@whut.edu.cn

  • 中图分类号: U675.91

A Coordinated Control Method of Longitudinal Ship Speed Based on Model Predictive Control

  • 摘要: 多船协同航行在海事搜救、资源勘探、极地航运等领域中具有显著优势,其中纵向航速协同控制是实现船舶协同航行的关键。通过分析船舶螺旋桨转速、加速度与航速之间的关系,构建了考虑风力影响的船舶纵向动力模型,为实现前后船加速度与跟驰距离的关联,引用基于变时距策略的船舶间距模型。设计了考虑航速、加速度等多约束的多船航速控制目标函数,并利用模型预测控制方法实现了最优化问题的实时求解。通过Matlab进行仿真验证,结果表明,提出的基于模型预测控制方法的船舶纵向航速协同控制方法在前船加速、减速、匀速等工况下,后船均能实现对前船的精确稳定跟驰,其距离跟踪误差分别为0.092 5 m,0.192 8 m,0.166 2 m,与PID方法相比具有更好的收敛性、跟踪精度和抗干扰能力。

     

  • 图  1  船舶跟驰示意图

    Figure  1.  Ship following

    图  2  预报仿真

    Figure  2.  Forecast simulation

    图  3  船舶跟驰期望距离与实际距离

    Figure  3.  Expected and actual distances of ship following

    图  4  前船速度与主船速度

    Figure  4.  Speeds of the forward and lead ships

    图  5  前船加速度与主船加速度

    Figure  5.  Accelerated speeds of the forward and lead ships

    图  6  主船螺旋桨转速

    Figure  6.  Propeller speed of the lead ship

    图  7  船舶跟驰期望距离与实际距离

    Figure  7.  Expected and actual distances of ship following

    图  8  前船速度与主船速度

    Figure  8.  Speeds of the forward and lead ships

    图  9  前船加速度与主船加速度

    Figure  9.  Accelerated speeds of the forward and lead ships

    图  10  主船螺旋桨转速

    Figure  10.  Propeller speed of the lead ship

    图  11  船舶跟驰期望距离与实际距离

    Figure  11.  Expected and actual distances of ship following

    图  12  前船速度与主船速度

    Figure  12.  Speeds of the forward and lead ships

    图  13  前船加速度与主船加速度

    Figure  13.  Accelerated speeds of the forward and lead ships

    图  14  主船螺旋桨转速

    Figure  14.  Propeller speed of the lead ship

    图  15  船舶跟驰期望距离与实际距离

    Figure  15.  Expected and actual distances of ship following

    图  16  前船速度与主船速度

    Figure  16.  Speeds of the forward and lead ships

    图  17  前船加速度与主船加速度

    Figure  17.  Accelerated speeds of the forward and lead ships

    图  18  主船螺旋桨转速

    Figure  18.  Propeller speed of the lead ship

    图  19  船舶跟驰期望距离与实际距离

    Figure  19.  Expected distance and actual distance of ship following

    图  20  前船速度与主船速度

    Figure  20.  Speeds of the forward and lead ships

    图  21  前船加速度与主船加速度

    Figure  21.  Accelerated speeds of the forward and lead ships

    图  22  主船螺旋桨转速

    Figure  22.  Propeller speed of the lead ship

    图  23  船舶跟驰期望距离与实际距离

    Figure  23.  Expected and actual distances of ship following

    图  24  前船速度与主船速度

    Figure  24.  Speeds of the forward and lead ships

    图  25  前船加速度与主船加速度

    Figure  25.  Accelerated speeds of the forward and lead ships

    图  26  主船螺旋桨转速

    Figure  26.  Propeller speed of the lead ship

    表  1  仿真结果

    Table  1.   Simulation results

    性能指标 前船做加速运动 前船做减速运动 前船做匀速运动
    MPC PID MPC PID MPC PID
    收敛速度/s 108 120 20 60 20 140
    平均误差/m 2.114 5 3.369 2 0.814 8 1.574 7 0.692 5 2.325 8
    收敛后的平均误差/m 0.092 5 0.163 6 0.192 8 0.244 1 0.166 2 0.277 4
    下载: 导出CSV
  • [1] 周翔宇, 吴兆麟, 王凤武, 等. 自主船舶的定义及其自主水平的界定[J]. 交通运输工程学报, 2019, 19 (6): 149-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201906016.htm

    ZHOU Xiangyu, WU Zhaolin, WANG Fengwu, et al. Definition of autonomous ship and its autonomy level[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 149-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201906016.htm
    [2] 何延康, 张笛, 张金奋等. 海事安全研究发展动态: 第13届船舶导航与海上运输安全国际会议综述[J]. 交通信息与安全, 2019, 37 (6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201906002.htm

    HE Yankang, ZHANG Di, ZHANG Jinfen, et al. Research trends of maritime safety: A review of transNav 2019 conference[J]. Journal of Transport Information and Safety, 2019, 37 (6): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201906002.htm
    [3] KUMARAWADU S, KUMARA K J C. On the speed control for automated surface vessel operation[C]. 3rd International Conference on Information and Automation for Sustainability, Australia, Melbourne: IEEE, 2007.
    [4] SHOJAEI K. Leader-follower formation control of underactuated autonomous marine surface vehicles with limited torque[J]. Ocean Engineering, 2015 (105) : 196-205. http://www.sciencedirect.com/science/article/pii/S0029801815002693
    [5] SHOJAEI K. Observer-based neural adaptive formation control of autonomous surface vessels with limited torque[J]. Robotics and Autonomous Systems, 2016 (78) : 83-96. http://www.sciencedirect.com/science/article/pii/S0921889016000129
    [6] 李娟, 马涛, 刘建华. 基于领航者的多UUV协调编队滑模控制[J]. 哈尔滨工程大学学报, 2018, 39 (2): 350-357. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201802024.htm

    LI Juan, MA Tao, LIU Jianhua. Multi-UUV coordinated formation sliding mode control based on leader[J]. Journal of Harbin Engineering University, 2018, 39 (2): 350-357. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201802024.htm
    [7] 王珍. 随机风浪下船舶航速自适应控制[J]. 舰船科学技术, 2018, 40 (8): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201808010.htm

    WANG Zhen. Research on ship speed adaptive control under stochastic wind wave[J]. Ship Scienceand Technology, 2018, 40 (8): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201808010.htm
    [8] 朱俊. 基于跟驰理论的内河航道通过能力计算模型[J]. 交通运输工程学报, 2009, 9 (5): 83-87. doi: 10.3321/j.issn:1671-1637.2009.05.015

    ZHU Jun. Calculation model of inland waterway transit capacity based on ship-following theory[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (5): 83-87. (in Chinese) doi: 10.3321/j.issn:1671-1637.2009.05.015
    [9] 明力, 刘敬贤, 王先锋. 超大型船舶安全纵向间距计算模型[J]. 中国航海, 2014, 37 (4): 40-43. doi: 10.3969/j.issn.1000-4653.2014.04.009

    MING Li, LIU Jingxian, WANG Xianfeng. Calculation model of safe longitudinal distance for very large vessels[J]. Navigationof China, 2014, 37 (4): 40-43. (in Chinese) doi: 10.3969/j.issn.1000-4653.2014.04.009
    [10] 李振福, 孙悦, 韦博文". 冰上丝绸之路": 北极航线船舶航行安全的跟驰模型[J]. 大连海事大学学报, 2018, 44 (3): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201803006.htm

    LI Zhenfu, SUN Yue, WEI Bowen. The"Silk Road on Ice" -A model for following the safety of ship navigation in the Arctic route[J]. Journal of Dalian Maritime University, 2018, 44(3): 22-27. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201803006.htm
    [11] HE Y, CIUFFO B, ZHOU Q, et al. Adaptive cruise control strategies implemented on experimental vehicles: A Review[C]. 9th IFAC Symposium on Advances in Automotive Control AAC 2019: Orléans, 2019.
    [12] LI S E, JIA Z, LI K, et al. Fast online computation of a model predictive controller and its application to fuel economy-oriented adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16 (3): 1199-1209. http://ieeexplore.ieee.org/document/6899598
    [13] HU B, LI J, YANG J, et al. Reinforcement learning approach to design practical adaptive control for a small-Scale intelligent vehicle[J]. Symmetry, 2019, 11 (9): 1139. doi: 10.3390/sym11091139
    [14] KIM H, LEE T H, SONG Y, et al. Robust design optimisation of adaptive cruise controller considering uncertainties of vehicle parameters and occupants[J]. Vehicle System Dynamics, 2020, 58 (6): 987-1005. doi: 10.1080/00423114.2019.1627375
    [15] 王文飒, 梁军, 陈龙, 等. 基于深度强化学习的协同式自适应巡航控制[J]. 交通信息与安全, 2019, 37 (3): 93-100. doi: 10.3963/j.issn.1674-4861.2019.03.012

    WANG Wensa, LIANG Jun, CHEN Long, et al. Collaborative adaptive cruise control based on deep reinforcement learning[J]. Journal of Transport Information and Safety, 2019, 37 (3): 93-100. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.03.012
    [16] 赵树恩, 冷姚, 邵毅明. 车辆多目标自适应巡航显式模型预测控制[J]. 交通运输工程学报, 2020, 20 (3): 206-216. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003023.htm

    ZHAO Shuen, LENG Yao, SHAO Yiming. Explicit model predictive control of multi-objective adaptive cruise of vehicle[J]. Journal of Traffic and Transportation Engineering, 2020, 20 (3): 206-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003023.htm
    [17] 黄菊花, 邹汉鹏, 刘明春. 考虑测量噪声的车辆自适应巡航控制系统纵向跟车研究[J]. 北京理工大学学报, 2020, 40 (3): 254-261. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG202003004.htm

    HUANG Juhua, ZHOU Hanpeng, LIU Mingchun. Research on the longitudinal tracking of adaptive cruise control system for vehicles considering of measurement noise[J]. Transactions of Beijing Institute of Technology. 2020, 40(3): 254-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG202003004.htm
    [18] 赵乾博. 考虑油耗及经济性的营运船舶定航线航速优化[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    ZHAO Qianbo. Optimization of sailing speed of operating ship in fixed routes by considering fuel consumption and economy[D]. Harbin: Harbin Engineering University, 2017. (in Chinese)
    [19] 洪碧光. 船舶风压系数计算方法[J]. 大连海运学院学报, 1991 (2): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS199102000.htm

    HONG Biguang. A method of calculating the wind coefficient of ships[J]. Journal of Dalian Marine College, 1991(2): 113-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS199102000.htm
    [20] 李国定, 古文贤. 螺旋桨推力系数KT值的数学表达[J]. 大连海运学院学报, 1991, 17 (3): 261-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS199103006.htm

    LI Guoding, GU Wenxian. On the method of the mathematical presentation of propeller thrust coefficient[J]. Journal of Dalian Marine College, 1991, 17 (3): 261-267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS199103006.htm
    [21] 张丽. 纯电动汽车全速自适应巡航控制系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    ZHANG Li. Research on full speed adaptive cruise control system of pure electric vehicle[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  747
  • HTML全文浏览量:  307
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回