留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间滞后模型的公共自行车出行特征及影响因素分析

于二泽 周继彪

于二泽, 周继彪. 基于空间滞后模型的公共自行车出行特征及影响因素分析[J]. 交通信息与安全, 2021, 39(1): 103-110. doi: 10.3963/j.jssn.1674-4861.2021.01.0012
引用本文: 于二泽, 周继彪. 基于空间滞后模型的公共自行车出行特征及影响因素分析[J]. 交通信息与安全, 2021, 39(1): 103-110. doi: 10.3963/j.jssn.1674-4861.2021.01.0012
YU Erze, ZHOU Jibiao. Travel Characteristics and Influencing Factors of Bike Sharing Based on Spatial Lag Model[J]. Journal of Transport Information and Safety, 2021, 39(1): 103-110. doi: 10.3963/j.jssn.1674-4861.2021.01.0012
Citation: YU Erze, ZHOU Jibiao. Travel Characteristics and Influencing Factors of Bike Sharing Based on Spatial Lag Model[J]. Journal of Transport Information and Safety, 2021, 39(1): 103-110. doi: 10.3963/j.jssn.1674-4861.2021.01.0012

基于空间滞后模型的公共自行车出行特征及影响因素分析

doi: 10.3963/j.jssn.1674-4861.2021.01.0012
基金项目: 

国家自然科学基金项目 52002282

浙江省自然科学基金项目 LQ19E080003

浙江省哲学社会科学规划课题项目 21NDJC163YB

宁波市哲学社会科学规划课题项目 G20-ZX37

详细信息
    作者简介:

    于二泽(1994—),硕士.研究方向:共享交通行为分析.E-mail: yuerze123@163.com

    通讯作者:

    周继彪(1986—),博士,副教授.研究方向:交通仿真研究.E-mail: zhoujb2014@nbut.edu.cn

  • 中图分类号: U491.1

Travel Characteristics and Influencing Factors of Bike Sharing Based on Spatial Lag Model

  • 摘要: 为充分挖掘公共自行车时空出行特征,探讨城市空间环境与骑行需求的潜在联系。以宁波市中心城区为案例,基于公共自行车IC卡数据获取出行时空变化规律,在验证租、还车需求具有空间自相关性的基础上,通过建立空间滞后模型,分析了人口密度、道路分布、公共交通、站点配置和建成环境因素对骑行需求的影响。研究表明:①工作日、非工作日内租、还车需求的全局Moran's I分别为0.294,0.281,0.272和0.271,表现出显著的空间正相关性;②各模型的拟合优度R2分别是0.431,0.424,0.412,0.401,具有良好的拟合效果与解释性;③道路分布、建成环境变量对公共自行车使用的影响效应存在时间差异,其中公交专用道里程与非工作日内的站点需求量呈负相关,工作日内POI混合度对租、还车需求具有正向引导作用。

     

  • 图  1  研究区域示意图(中国 宁波)

    Figure  1.  Study area(Ningbo, China)

    图  2  公共自行车出行时间分布图

    Figure  2.  Distributions of bike-sharing travel time

    图  3  公共自行车使用空间分布图

    Figure  3.  Spatial distribution of bike-sharing usage

    图  4  空间自相关检验结果

    Figure  4.  Results of spatial autocorrelation test

    图  5  因变量数据分布图

    Figure  5.  Distribution of dependent variables

    表  1  解释变量描述统计

    Table  1.   Descriptive statistics of explanatory variables

    解释变量 平均值 标准差 VIF 标注
    人口密度 人口密度/(千人/km2) 0.53 0.23 1.49 D_pop
    主干路里程/km 0.22 0.25 1.79 L_major
    道路分布 次干路里程/km 0.28 0.26 1.46 L_sub
    支路里程/km 0.30 0.28 1.23 L_branch
    公交专用道里程/km 0.10 0.19 1.70 L_prior
    公共交通 地面公交站点数量/km 1.33 0.69 1.80 N_me tr o
    地铁站点数量 0.03 0.15 1.23 N_bus
    站点配置 站点粧位数量 28.96 9.28 1.02 C_station
    缓冲区内粧位总量 33.34 36.73 1.21 C_buffer
    建筑设施 居住社区型POI数量 12.11 15.63 1.57 POI_res
    公共服务型POI数量 12.81 13.16 3.24 POI_pub
    商业服务型POI数量 86.93 109.63 3.53 POI_com
    工业用地型POI数量 15.18 18.48 1.99 POI_ind
    交通设施型POI数量 10.86 10.27 4.53 POI_trans
    广场绿地型POI数量 0.93 2.63 1.21 POI_park
    POI分布总量 43.07 13.08 4.25 POI_total
    POI混合度 2.50 0.76 1.57 POI_gini
    下载: 导出CSV

    表  2  模型检验结果

    Table  2.   Results of the model test

    模型 指标 LM-lag LM-Error Robust LM-lag Robust LM-Error
    模型Ⅰ (Y=WDP) Value 88.191 52.480 46.122 10.414
    P 0.000 0.000 0.000 0.001
    模型Ⅱ(Y=WDD) Value 105.800 68.735 45.813 8.792
    P 0.000 0.000 0.000 0.033
    模型Ⅲ(Y=WEP) Value 84.290 48.642 48.560 12.911
    P 0.000 0.000 0.000 0.000
    模型Ⅳ(Y=WED) Value 97.902 62.513 45.569 10.180
    P 0.000 0.000 0.000 0.001
    下载: 导出CSV

    表  3  拟合结果

    Table  3.   Fitting results of the model

    变量 模型Ⅰ 模型Ⅱ 模型Ⅲ 模型Ⅳ
    W_ln(Y) 0.22r 0.267** 0.258** 0.251**
    Constant 1.469** 1.401** 1.475** 1.573**
    D_pop 0.877** 0.869** 0.841** 0.852**
    L_major 0.359* 0.342* 0.369* 0.341*
    L_sub 0.312* 0.351** 0.218 0.213
    L_branch —0.166 —0.175 —0.273** —0.272*
    L_prior —0.340 —0.293
    C_station 0.009** 0.007* 0.006 0.005
    POI_res 0.007 0.006
    POI_pub 0.006 0.006* 0.004* 0.008*
    POI_ind —0.004 —0.003
    POI_total 0.087* 0.087* 0.083 0.081
    POI_gini 0.079 0.073
    R2 0.431 0.424 0.412 0.401
    AIC 2 801.52 2 798.69 2 899.43 2 881.59
    Log —1 381.76 —1 380.34 —1 430.72 —1 421.79
    注:*代表 p <0.01;**代表 p <0.001。
    下载: 导出CSV
  • [1] SOHRABI S, PALETI R, BALAN L, et al. Real-time prediction of public bike sharing system demand using generalized extreme value count model[J]. Transportation Research Part A: Policy and Practice, 2020(133): 325-336. http://ideas.repec.org/a/eee/transa/v133y2020icp325-336.html
    [2] EL-ASSI W, MAHMOUD M, HABIB, K. Effects of built environment and weather on bike sharing demand: A station level analysis of commercial bike sharing in Toronto[J]. Transportation, 2017, 44(3): 589-613. doi: 10.1007/s11116-015-9669-z
    [3] LIN Pengfei, WENG Jiancheng, LIANG Quan, et al. Impact of weather conditions and built environment on public bikesharing trips in Beijing[J]. Networks and Spatial Economics, 2020, 20(1): 1-17. doi: 10.1007/s11067-019-09465-6
    [4] SUN Y, MOBASHERI A, HU X, et al. Investigating impacts of environmental factors on the cycling behavior of bicycle-sharing users[J]. Sustainability, 2017, 9(6): 1060-1072. doi: 10.3390/su9061060
    [5] 尹秋怡, 甄峰, 罗桑扎西, 等. 新城公共自行车出行空间影响因素及布局建议[J]. 现代城市研究, 2018(12): 9-15+46. doi: 10.3969/j.issn.1009-6000.2018.12.002

    YIN Qiuyi, ZHEN Feng, LUO Sangzhaxi, et al. Influencing factors and layout suggestions of public bicycle travel space in the new city[J]. Modern Urban Research, 2018(12): 9-15+46. (in Chinese) doi: 10.3969/j.issn.1009-6000.2018.12.002
    [6] LIN J, ZHAO P, TAKADA K, et al. Built environment and public bike usage for metro access: a comparison of neighborhoods in Beijing, Taipei, and Tokyo[J]. Transportation Research Part D: Transport and Environment, 2018(63): 209-221. http://www.sciencedirect.com/science/article/pii/S1361920917307198
    [7] BAO Jie, SHI Xiaomeng, ZHANG Hao. Spatial analysis of bikeshare ridership with smart card and POI data using geographically weighted regression method[J]. IEEE Access, 2018(6): 76049-76059.
    [8] FAGHIH-IMANI A, ELURU N. Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York Citibike system[J]. Journal of Transport Geography, 2016(54): 218-227.
    [9] MA Xinwei, JI Yanjie, JIN Yuchuan, et al. Modeling the factors influencing the activity spaces of bikeshare around metro stations: A spatial regression model[J]. Sustainability, 2018, 10 (11): 3949. doi: 10.3390/su10113949
    [10] 杜明洋, 程琳, 李雪峰. 基于自适应粒子群小波网络的公共自行车出行需求预测[J]. 公路交通科技, 2019, 36(6): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201906013.htm

    DU Mingyang, CHENG Lin, LI Xuefeng. Prediction of public bike trip demand based on APSO-WNN[J]. Journal of Highway and Transportation Research and Development, 2019, 36 (6): 94-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201906013.htm
    [11] LIU H, LIN J. Associations of built environments with spatiotemporal patterns of public bicycle use[J]. Journal of Transport Geography, 2019, 74(3): 299-312. http://www.sciencedirect.com/science/article/pii/S0966692318305660
    [12] ORNL."2017 LandScan data for population distribution from the Oak Ridge National Laboratory in USA."[R/OL]. (2018-06)[2020-12-09]. https://landscan.ornl.gov/.
    [13] 池娇, 焦利民, 董婷, 等. 基于POI数据的城市功能区定量识别及其可视化[J]. 测绘地理信息, 2016, 41(2): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201602018.htm

    CHI Jiao, JIAO Limin, DONG Ting, et al. Quantitative identification and visualization of urban functional area based on POI data[J]. Journal of Geomatics, 2016, 41(2): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201602018.htm
    [14] 庄楚天, 吴戈. 基于站点爬虫数据的公共自行车系统时空特征分析[J]. 交通信息与安全, 2017, 35(3): 51-58. doi: 10.3963/j.issn.1674-4861.2017.03.007

    ZHUANG Chutian, WU Ge. Spatial-temporal characteristics of a shared bicycle system based on web crawler data[J]. Journal of Transport Information and Safety, 2017, 35(3): 51-58. (in Chinese) doi: 10.3963/j.issn.1674-4861.2017.03.007
    [15] ANSELIN L. Spatial econometrics: Methods and models[M]. Dordrecht: Kluwer Academic Publishers, 1988.
    [16] NKURUNZIZA A, ZUIDGEEST M, BRUSSEL M. Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dares-Salaam[J]. Transport Policy, 2012 (24): 249-259.
    [17] ZHANG Ying, THOMAS T, BRUSSEL M, et al. Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China[J]. Journal of Transport Geography, 2017(58): 59-70. http://www.sciencedirect.com/science/article/pii/S0966692316300412
    [18] GUO Yanyong, ZHOU Jibiao, WU Yao, et al. Identifying the factors affecting bike-sharing usage and degree of satisfaction in Ningbo, China[J]. Plos One, 2017, 12(9): 1-19. http://www.ncbi.nlm.nih.gov/pubmed/28934321
    [19] 张敏捷, 周继彪, 董升, 等. 城市公共自行车准动态调度方法[J]. 交通运输系统工程与信息, 2019, 19(5): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201905026.htm

    ZHANG Minjie, ZHOU Jibiao, DONG Sheng, et al. Quasi-dynamic balancing method for urban public bike-sharing system[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(5): 185-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201905026.htm
    [20] 于乐, 谢秉磊, 张鹍鹏, 等. 职住地建成环境对网约车通勤出行影响研究[J]. 交通信息与安全, 2019, 37(6): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201906019.htm

    YU Le, XIE Binglei, ZHANG Kunpeng, et al. Impacts of built environments on car-hailing commuting in job-housing locations[J]. Journal of Transport Information and Safety, 2019, 37 (6): 149-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201906019.htm
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  295
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-09
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回