A Capacity Model of Freeway Merging Areas with Partially Connected Automated Traffic
-
摘要: 面向人类驾驶和具备协同自适应巡航功能的网联自动驾驶组成的新型混合交通流,考虑道路交通特性、道路结构以及匝道汇入前主线交通状态等因素的交互作用机理,基于概率统计理论解析网联自动驾驶渗透率和编队长度间的耦合关系,进一步基于间隙接受理论分析匝道汇入交通对合流区通行能力的折减效应,建立快速路合流区通行能力模型,定量描述不同道路条件下合流区通行能力如何随网联自动驾驶渗透率和编队长度变化。模型中的道路交通特性、道路结构及匝道汇入前部分交通状态参数根据实际道路交通环境标定,提升了模型的通用性与可迁移性。搭建内嵌车辆动力学模块的Vissim仿真平台进行模型评估,结果表明,模型精度在80%以上,且在不同网联自动驾驶渗透率和编队长度条件下皆表现良好。Abstract: A capacity model is developed to study freeway merging areas of a novel mixed traffic with human-driven vehicles and connected automated vehicles equipped with cooperative adaptive cruise control. The interaction mechanism of factors, such as road traffic characteristics, road structure, and mainline traffic state before the merge, is considered. The probability and statistics theory is used to analyze coupling relationships between penetration rate and platoon length. Furthermore, based on the gap acceptance theory, reduction effects of ramp merging traffic on the capacity of the merging area is analyzed. The capacity model of freeway merging areas with partially connected automated traffic is established to quantitatively describe how the capacity changes with the penetration rate and platoon length of connected automated vehicles under various road conditions. The parameters of road traffic characteristics, road structure, and part of the traffic state before the ramp merge are calibrated according to the actual traffic condition, which improves versatility and transferability of the model. A Vissim simulation platform with an embedded vehicle dynamics module is developed to evaluate the model. The results show that the accuracy of the model is generally over 80%. The model performed well under various penetration rates and platoon lengths of connected automated vehicles.
-
表 1 模型符号说明
Table 1. Model Notations
符号 含义 σ 具备CACC编队功能的CAVs渗透率 σe 匝道汇入后CAVs有效渗透率 λ 爱尔朗分布形状参数 ϕ 匝道交通需求,veh/h Cmix 新型混合交通流主线道路通行能力,veh/(h·ane) C 人类驾驶交通流道路通行能力, veh/(h·ane) ${\widetilde {{C_{{\mathop{\rm mix}\nolimits} }}}} $ 混有CACC编队的快速路合流区通行能力,veh/(h·ane) D 主线交通需求, veh/h ${\varepsilon \left( {\sigma , {N_{\rm{m}}}} \right)} $ 每个CAV的道路临界通行能力平均增益 ${\varepsilon \left( {{\sigma _e}, {N_{\rm{m}}}} \right)} $ 考虑匝道汇入后每个CAV的道路临界通行能力平均增益, s K 爱尔朗分布速率参数 Nm CACC最大编队长度(即编队长度限制), veh/platoon Na CACC实际编队长度, veh/platoon $ {{{\bar N}_{\rm{a}}}}$ CACC平均编队长度(即期望编队长度), veh/platoon $ {{{\tilde N}_{\rm{a}}}}$ 有效CACC编队长度, veh/platoon NG 时间段[0, T] 内匝道汇入主线的车辆数, veh N 合流区主线在时间段[0, T] 内通过车辆数, veh PG 匝道汇入概率 SN 编队长度分布标准差, veh/platoon ${t_{{\rm{HF}}}^{\min }} $ HVs跟随其他车辆的最小车头时距, s $ {t_{{\rm{AF}}}^{\min }}$ CAVs跟随其他车辆的最小车头时距, s $ {t_{{\rm{CF}}}^{\min }}$ CACC编队内部的最小车头时距, s PAF CAVs为跟随车的概率 PHF HVs为跟随车的概率 PCF CAVs处于CACC编队内部的概率 ${t_{{\rm{mix}}}^{\min }} $ 混合交通流平均最小车头时距, s m 主线车道数 $ {t_{\rm{G}}^{\min }}$ 匝道汇入可接受最小车头时距, s $ {\bar t}$ 主线外侧车道平均可穿越车头时距, s V 主线车头时距方差, s2 -
[1] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the art and technical trends of intelligent and connected vehicles[J]. Automotive Safety and Energy, 2017, 8(1): 1-14. (in Chinese) doi: 10.3969/j.issn.1674-8484.2017.01.001 [2] 张耀伟, 李振龙, 赵晓华, 等. 车路协同下HMI对跟驰行为与视觉特性的影响[J]. 交通信息与安全, 2020, 38(2): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002005.htmZHANG Yaowei, LI Zhenlong, ZHAO Xiaohua, et al. Influences of HMI on car following behaviors and visualcharacteristics in cooperative vehicle infrastructure system[J]. Journal of Transport Information and Safety, 2020, 38(2): 9-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002005.htm [3] HILL C J, GARRETT J K. AASHTO connected vehicle infrastructure deployment analysis[R]. United States: Joint Program Office for Intelligent Transportation Systems, 2011. [4] 李秀文, 荣建, 刘小明, 等. 快速路分、合流影响区交通特性及通行能力研究[J]. 公路交通科技, 2006, 23(1): 101-104. doi: 10.3969/j.issn.1002-0268.2006.01.026LI Xiuwen, RONG Jian, LIU Xiaoming, et al. Analysis of traffic flow characteristics and capacities of diverging and merging influence areas[J]. Journal of Highway and Transportation Research and Development, 2006, 23(1): 101-104. (in Chinese) doi: 10.3969/j.issn.1002-0268.2006.01.026 [5] 孙剑, 殷炬元, 黎淘宁. 快速路入口匝道瓶颈宏观交通流模型[J]. 交通运输工程学报, 2019, 19(3): 122-133. doi: 10.3969/j.issn.1671-1637.2019.03.013SUN Jian, YIN Juyuan, LI Taoning. Macroscopic traffic flow model of expressway on-ramp bottlenecks[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 122-133. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.013 [6] 魏中华, 李志, 周晨静, 等. 城市快速路合流区汇入角度对合流区通行能力的影响[J]. 公路交通科技, 2017, 34(5): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201705016.htmWEI Zhonghua, LI Zhi, ZHOU Chenjing, et al. Effect of merge angle on capacity of urban expressway merge area[J]. Journal of Highway and Transportation Research and Development, 2017, 34(5): 116-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201705016.htm [7] VAN AREM B, VAN DRIEL C J, VISSER R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 429-436. doi: 10.1109/TITS.2006.884615 [8] SHLADOVER S E, SU D, LU X Y. Impacts of cooperative adaptive cruise control on freeway traffic flow[J]. Transportation Research Record, 2012, 2324(1): 63-70. doi: 10.3141/2324-08 [9] XIAO L, WANG M, SCHAKEL W, et al. Unravelling effects of cooperative adaptive cruise control deactivation on traffic flow characteristics at merging bottlenecks[J]. Transportation Research Part C: Emerging Technologies, 2018(96): 380-397. http://www.sciencedirect.com/science/article/pii/S0968090X1830528X [10] LIU H, KAN X D, SHLADOVER S E, et al. Modeling impacts of cooperative adaptive cruise control on mixed traffic flow in multi-lane freeway facilities[J]. Transportation Research Part C: Emerging Technologies, 2018(95): 261-279. http://www.sciencedirect.com/science/article/pii/S0968090X18310313 [11] CHEN D, AHN S, CHITTURI M, et al. Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles[J]. Transportation Research Part B: Methodological, 2017(100): 196-221. http://smartsearch.nstl.gov.cn/paper_detail.html?id=3a51b2453c855cd82a6d750b7ff3bf26 [12] GHIASI A, HUSSAIN O, QIAN Z S, et al. A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method[J]. Transportation Research Part B: Methodological, 2017(106): 266-292. [13] 秦严严, 王昊, 王炜, 等. 混有协同自适应巡航控制车辆的异质交通流稳定性解析与基本图模型[J]. 物理学报, 2017, 66(9): 257-265. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201709027.htmQIN Yanyan, WANG Hao, WANG Wei, et al. Stability analysis and fundamental diagram ofheterogeneous traffic flow mixed with cooperativeadaptive cruise control vehicles[J]. Acta Physica Sinica, 2017, 66(9): 257-265. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201709027.htm [14] VANDER WERF J, SHLADOVER S E, MILLER M A, et al. Effects of adaptive cruise control systems on highway traffic flow capacity[J]. Transportation Research Record, 2002(1): 78-84. http://www.researchgate.net/publication/239438678_Effects_of_Adaptive_Cruise_Control_Systems_on_Highway_Traffic_Flow_Capacity [15] National Research Council highway capacity manual[M]. 5th Ed. Washington D. C: Transportation Research Board, 2010. [16] ARNAOUT G M, BOWLING S. A progressive deployment strategy for cooperative adaptive cruise control to improve traffic dynamics[J]. International Journal of Automation and Computing, 2014, 11(1): 10-18. doi: 10.1007/s11633-014-0760-2 [17] PUEBOOBPAPHAN R, PARK D, KIM Y, et al. Time headway distribution of probe vehicles on single and multiple lane highways[J]. Ksce Journal of Civil Engineering, 2013, 17(4): 824-836. doi: 10.1007/s12205-013-0212-5 [18] LAI J T, HU J, CUI L, et al. A generic simulation platform for cooperative adaptive cruise control under partially connected and automated environment[J]. Transportation Research Part C: Emerging Technologies, 2020(121): 102874. http://www.sciencedirect.com/science/article/pii/s0968090x20307749 [19] TREIBER M, KESTING A. Traffic flow dynamics[M]. New York: Springer, 2013. [20] MILANÚS V, SHLADOVER S E, SPRING J, et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(1): 296-305. http://smartsearch.nstl.gov.cn/paper_detail.html?id=92aaed0531520f273c3984b5ee42ddbb [21] CUI L, HU J, PARK B B, et al. Development of a simulation platform for safety impact analysis considering vehicle dynamics, sensor errors, and communication latencies: assessing cooperative adaptive cruise control under cyber attack[J]. Transportation Research Part C: Emerging Technologies, 2018(97): 1-22. http://www.sciencedirect.com/science/article/pii/S0968090X18305990