留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灵活多车场多类型的叫车接送问题的规划模型

陈可嘉 方云飞 骆佳艺

陈可嘉, 方云飞, 骆佳艺. 灵活多车场多类型的叫车接送问题的规划模型[J]. 交通信息与安全, 2021, 39(3): 103-110. doi: 10.3963/j.jssn.1674-4861.2021.03.013
引用本文: 陈可嘉, 方云飞, 骆佳艺. 灵活多车场多类型的叫车接送问题的规划模型[J]. 交通信息与安全, 2021, 39(3): 103-110. doi: 10.3963/j.jssn.1674-4861.2021.03.013
CHEN Kejia, FANG Yunfei, LUO Jiayi. A Programming Model for the Flexible Multi-depot Heterogeneous Dial-a-ride Problems[J]. Journal of Transport Information and Safety, 2021, 39(3): 103-110. doi: 10.3963/j.jssn.1674-4861.2021.03.013
Citation: CHEN Kejia, FANG Yunfei, LUO Jiayi. A Programming Model for the Flexible Multi-depot Heterogeneous Dial-a-ride Problems[J]. Journal of Transport Information and Safety, 2021, 39(3): 103-110. doi: 10.3963/j.jssn.1674-4861.2021.03.013

灵活多车场多类型的叫车接送问题的规划模型

doi: 10.3963/j.jssn.1674-4861.2021.03.013
基金项目: 

国家自然科学基金项目 71601050

福建省社会科学规划项目 FJ2020B036

详细信息
    通讯作者:

    陈可嘉(1978—),博士,教授.研究方向:交通运输系统工程.E-mail:kjchen@fzu.edu.cn

  • 中图分类号: U492.22

A Programming Model for the Flexible Multi-depot Heterogeneous Dial-a-ride Problems

  • 摘要: 为解决1种新的叫车接送问题(DARP)——灵活多车场多类型的叫车接送问题(MDHDARP-FD),建立以总行驶成本最小为目标的混合整数非线性规划数学模型。由于模型非常复杂,难以直接求解,对模型进行约束线性化、变量聚合和添加有效不等式等处理。在约束线性化过程中,非线性约束被重写为等价的线性约束;在变量聚合过程中,将具有相同性质的决策变量进行聚合,以减少变量数量;还引入了一些有效不等式来强化模型。从而获得1个解空间较小易于求解的新线性规划模型,并结合不同类型的车辆和乘客需求进行叫车接送问题的仿真测试。算例结果表明,相比于传统叫车接送问题,该模型能在满足复杂约束的基础上,得到1组实现乘客接送需求的最优车辆路线,并且能有效降低总行驶成本、车辆行驶时间和求解时间,总行驶成本在不同类型的DARP上可平均降低1.51%~6.69%,证实了叫车接送问题的总行驶成本可以随着灵活车场的引入而减少。

     

  • 图  1  算例Ea4-16的车辆接送路线图

    Figure  1.  Route for vehicles of Example Ea4-16

    表  1  算例Ea4-16的乘客需求信息

    Table  1.   Passengers'demand information of Example Ea4-16

    序号 横坐标 纵坐标 服务时间/min 最大乘车时间/ min 位置需求 时间窗下界/min 时间窗上界/min
    常规座位(员工座位) 常规座位(病人座位) 担架位 轮椅位
    1 6.267 0.981 3 30 0 0 0 1 0 1 440
    2 —4.718 6.925 3 30 0 1 0 0 0 1 440
    3 3.254 7.621 3 30 0 1 0 0 0 1 440
    4 9.654 2.799 3 30 0 0 1 0 0 1 440
    5 8.575 2.701 3 30 0 1 0 0 0 1 440
    6 —9.732 —8.314 3 30 0 1 0 0 0 1 440
    7 9.937 4.969 3 30 0 0 0 1 0 1 440
    8 —4.604 6.053 3 30 0 0 0 1 0 1 440
    9 —5.029 5.070 3 30 0 1 0 0 53 68
    10 —9.264 —7.979 3 30 0 1 0 0 105 120
    11 8.738 —9.966 3 30 0 1 0 0 74 89
    12 —3.420 7.617 3 30 0 0 1 0 3 18
    13 —5.865 —4.571 3 30 1 1 0 0 172 187
    14 6.300 5.322 3 30 0 0 0 1 61 76
    15 —2.219 —7.605 3 30 0 1 0 0 179 194
    16 —1.654 —7.838 3 30 0 1 0 0 154 169
    17 —1.548 —4.124 3 0 0 0 0 —1 138 153
    18 —4.818 6.259 3 0 0 —1 0 0 125 140
    19 —7.389 0.376 3 0 0 —1 0 0 95 110
    20 6.070 —0.549 3 0 0 0 —1 0 195 210
    21 —1.663 6.171 3 0 0 —1 0 0 103 118
    22 —0.665 —1.272 3 0 0 —1 0 0 103 118
    23 —5.005 0.918 3 0 0 0 0 —1 142 157
    24 6.200 —7.679 3 0 0 0 0 —1 157 172
    25 5.575 —7.408 3 0 0 —1 0 0 0 1 440
    26 —7.754 3.535 3 0 0 —1 0 0 0 1 440
    27 2.111 1.439 3 0 0 —1 0 0 0 1 440
    28 1.706 —1.733 3 0 0 0 —1 0 0 1 440
    29 —1.796 9.104 3 0 —1 —1 0 0 0 1 440
    30 —5.500 2.353 3 0 0 0 0 —1 0 1 440
    31 7.323 —7.149 3 0 0 —1 0 0 0 1 440
    32 —6.413 0.367 3 0 0 —1 0 0 0 1 440
    下载: 导出CSV

    表  2  算例Ea4-16的模型求解结果

    Table  2.   Model solution results of Example Ea4-16

    约束条件总数 变量总数 整数变量 运行时间/s 总行驶成本
    20 385 3 852 3 780 1 661.44 257.00
    下载: 导出CSV

    表  3  算例Ea4-16的最优接送路线

    Table  3.   Optimal route of Example Ea4-16

    车辆序号 出发车场坐标 最优接送路线 返回车场坐标
    1 [-5,-5] -6-22-16-13-32-29- [-5,5]
    2 [5,5] -14-3-30-19-10-26-2-18-8-24-4-20- [5,-5]
    3 [-5,5] -12-28-9-25-11-7-27-23- [-5,5]
    4 [5,-5] -5-1-21-17-15-31- [5,-5]
    下载: 导出CSV

    表  4  系列算例求解结果及比较

    Table  4.   Comparison results of examples

    Dataset Instance MDHDARP-FD CPU/s MD-H-DARP G1/% H-DARP G2/% 2-index-DARP G3/% DARP G4/%
    Ua2-16 284.18 1.38 284.18 0.00 294.25 3.42 300.17 5.33 294.25 3.42
    Ua2-20 333.57 8.67 343.43 2.87 344.83 3.27 345.74 3.52 344.83 3.27
    Ua2-24 426.75 28.14 427.17 0.10 431.12 1.01 448.07 4.76 431.12 1.01
    Ua3-18 279.05 31.89 289.67 3.67 300.48 7.13 316.78 11.91 300.48 7.13
    Dataset U Ua3-24 344.60 1 062.13 348.30 1.06 344.83 0.07 346.97 0.68 344.83 0.07
    Ua3-30 468.78 45 053 469.16 0.08 494.85 5.27 501.68 6.56 472.17 0.72
    Ua4-16 252.03 3 231.39 262.44 3.97 282.68 10.84 282.68 10.84 282.68 10.84
    Ua4-24 348.26 78 368.40 355.72 2.10 375.02 7.14 386.38 9.87 359.52 3.13
    AVG 342.15 15 973.13 347.51 1.54 358.51 4.56 366.06 6.69 353.734 3.28
    Ea2-16 327.67 2.58 327.67 0.00 331.13 1.04 331.13 1.04 331.13 1.04
    Ea2-20 335.76 8.62 345.59 2.84 347.03 3.25 347.89 3.49 347.03 3.25
    Ea2-24 443.08 56.03 445.88 0.63 450.21 1.58 461.89 4.07 451.27 1.81
    Ea3-18 279.05 41.66 289.67 3.67 300.63 7.18 316.78 11.91 300.63 7.18
    Dataset E Ea3-24 344.67 1 039.07 348.61 1.13 344.91 0.07 347.05 0.69 345.04 0.11
    Ea3-30 471.43 28 200.70 471.43 0.00 500.53 5.81 501.68 6.03 476.28 1.02
    Ea4-16 257.00 1 661.44 262.44 2.07 285.99 10.14 288.7 10.98 286.07 10.16
    Ea4-24 354.97 88 246.60 365.54 2.89 380.48 6.70 386.38 8.13 365.65 2.92
    AVG 351.70 14 907.09 357.10 1.51 367.61 4.33 372.69 5.79 362.88 3.09
    下载: 导出CSV
  • [1] DAGANZO C F, OUYANG Y. A general model of demand-responsive transportation services: From taxi to ridesharing to dial-a-ride[J]. Transportation Research Part B: Methodological, 2019(126): 213-224. http://ideas.repec.org/a/eee/transb/v126y2019icp213-224.html
    [2] CÉLIA P, CRAMA Y, PIRONET T. Recovery management for a dial-a-ride system with real-time disruptions[J]. European Journal of Operational Research, 2020, 280(3): 953-969. doi: 10.1016/j.ejor.2019.08.006
    [3] HO S C, SZETO W Y, KUO Y H, et al. A survey of dial-a-ride problems: Literature review and recent developments[J]. Transportation Research Part B: Methodological, 2018(111): 395-421. http://www.sciencedirect.com/science/article/pii/S0191261517304484
    [4] 孙博, 杨春风, 魏明, 等. 基于集对分析的随机需求接驳公交调度模型[J]. 交通信息与安全, 2018, 36(6): 130-134. doi: 10.3963/j.issn.1674-4861.2018.06.017

    SUN Bo, YANG Chunfeng, WEI Ming, et al. A scheduling model of shuttle buses for stochastic demand passengers based on set pair analysis[J]. Journal of Transport Information and Safety, 2018, 36(6): 130-134. (in Chinese). doi: 10.3963/j.issn.1674-4861.2018.06.017
    [5] 孙继洋, 黄建玲, 陈艳艳, 等. 响应动态需求的灵活型公交路径优化调度模型[J]. 北京工业大学学报, 2021, 47(3): 269-279. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202103009.htm

    SUN Jiyang, HUANG Jianling, CHEN Yanyan, et al. Flexible bus route optimal scheduling model in response to dynamic demand[J]. Journal of Beijing University of Technology, 2021, 47(3): 269-279. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202103009.htm
    [6] PARRAGH S N, DOERNER K F, HARTL R F. Variable neighborhood search for the dial-a-ride problem[J]. Computers & Operations Research, 2010, 37(6): 1129-1138. http://www.sciencedirect.com/science/article/pii/S030505480900241X
    [7] HÄME L. An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows[J]. European Journal of Operational Research, 2011, 209(1): 11-22. doi: 10.1016/j.ejor.2010.08.021
    [8] PARRAGH S N, SCHMID V. Hybrid column generation and large neighborhood search for the dial-a-ride problem[J]. Computers & Operations Research, 2013, 40(1): 490-497. http://www.sciencedirect.com/science/article/pii/S0305054812001694
    [9] MUELAS S, LATORRE A, PEÑA J M. A distributed VNS algorithm for optimizing dial-a-ride problems in large-scale scenarios[J]. Transportation Research Part C: Emerging Technologies, 2015(54): 110-130. http://www.sciencedirect.com/science/article/pii/S0968090X15000790
    [10] RITZINGER U, PUCHINGER J, HARTL R F. Dynamic programming based metaheuristics for the dial-a-ride problem[J]. Annals of Operations Research, 2016, 236(2): 341-358. doi: 10.1007/s10479-014-1605-7
    [11] TRIPATHY T, NAGAVARAPU S C, AZIZIAN K, et al. Solving dial-a-ride problems using multiple ant colony system with fleet size minimisation[C]. 17th Annual UK Workshop on Computational Intelligence: Advances in Computational Intelligence Systems, Cardiff, UK: UKCI, 2017.
    [12] MASMOUDI M A, BRAEKERS K, MASMOUDI M, et al. A hybrid genetic algorithm for the heterogeneous dial-a-ride problem[J]. Computers & Operations Research, 2017, 81(C): 1-13. doi: 10.1016/j.cor.2016.12.008
    [13] CORDEAU J F. A branch-and-cut algorithm for the dial-a-ride problem[J]. Operations Research, 2006, 54(3): 573-586. doi: 10.1287/opre.1060.0283
    [14] ROPKES, LAPORTEG, CORDEAUJ F. Models andbranch-andcut algorithms for pickup and delivery problems with time windows[J]. Networks: An International Journal, 2007, 49(4): 258-272. doi: 10.5555/1276833.1276836
    [15] LIU M, LUO Z, LIM A. A branch-and-cut algorithm for a realistic dial-a-ride problem[J]. Transportation Research Part B: Methodological, 2015, 81(1): 267-288.
    [16] WONG K I, BELL M G H. Solution of the dial-a-ride problem with multi-dimensional capacity constraints[J]. International Transactions in Operational Research, 2006, 13(3): 195-208. doi: 10.1111/j.1475-3995.2006.00544.x
    [17] PARRAGH S N. Introducing heterogeneous users and vehicles into models and algorithms for the dial-a-ride problem[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(5): 912-930. doi: 10.1016/j.trc.2010.06.002
    [18] PARRAGH S N, CORDEAU J F, DOERNER K F, et al. Models and algorithms for the heterogeneous dial-a-ride problem with driver-related constraints[J]. OR Spectrum, 2012, 34(3): 593-633. doi: 10.1007/s00291-010-0229-9
    [19] BRAEKERS K, CARIS A, JANSSENS G K. Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots[J]. Transportation Research Part B: Methodological, 2014(67): 166-186. http://www.sciencedirect.com/science/article/pii/S0191261514000800
    [20] BRAEKERS K, KOVACS A A. A multi-period dial-a-ride problem with driver consistency[J]. Transportation Research Part B: Methodological, 2016(94): 355-377. http://www.sciencedirect.com/science/article/pii/s0191261515301570
    [21] MOLENBRUCH Y, BRAEKERS K, AN C, et al. Multi-directional local search for a bi-objective dial-a-ride problem in patient transportation[J]. Computers & Operations Research, 2017, 77(C): 58-71. http://www.sciencedirect.com/science/article/pii/S0305054816301861
    [22] KEK A G H, CHEU R L, MENG Q, Distance-constrained capacitated vehicle routing problems with flexible assignment of start and end depots[J]. Mathematical and Computer Modelling, 2008(47): 140-152.
    [23] MARKOV I, VARONE S, BIERLAIRE M. Integrating a heterogeneous fixed fleet and a flexible assignment of destination depots in the waste collection VRP with intermediate facilities[J]. Transportation Research Part B: Methodological, 2016(84): 256-273.
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  265
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-18

目录

    /

    返回文章
    返回