A Comprehensive Evaluation Method for Coordinating Resource Allocations and Passenger Flow of Bus Lines
-
摘要: 由于常规公交线路资源配置存在不平衡、不充分等问题,量化评价公交线路资源配置与客流状况协调发展程度成为科学优化城市公交线网布局的重要前提。考虑公交线路资源配置与客流状况协调性特征构建指标体系,针对传统DEA方法中指标及其影响效应的确定存在较为主观、难以区分有效决策单元等劣势,以结构方程模型为依托筛选有效指标并确定其影响效应。在此基础上,应用基于理想点的改进DEA模型获得二者间协调性差异化排序,研究了公交线路资源配置与客流状况协调性综合评价方法,并以北京市海淀区65条公交线路数据进行案例分析。结果表明,平均站点间距指标对二者协调性影响最大,影响效应达0.901。所提出的方法能有效区分应用传统DEA方法难以排序的5条线路,且其评价结果与线路等级及实际运营情况相符,具有良好的应用可行性。
-
关键词:
- 城市交通 /
- 公交线路 /
- 资源配置与客流状况协调性 /
- 结构方程模型 /
- 数据包络分析法
Abstract: Due to the imbalanced and inadequate resource allocations of bus lines, the quantitative coordination evaluation of the resource allocations and passenger flow of bus lines are essential for the optimized layout of the urban public transport network.The indicator system is developed by considering the characteristics of the coordination between the resource allocations and passenger flow.Because of the disadvantages of the traditional DEA method, such as the groundless selection of indicators, the subjective determination of their influence effects, and the difficulty in distinguishing effective decision-making units, the structural equation model is introduced as a basis for selecting effective indicators and identifying the rank of the influencing effects.Further, the differentiated coordination ranking is obtained based on the improved DEA model where the ideal point is introduced.Therefore, the work proposes a comprehensive evaluation method of the coordination between the resource allocations and passenger flow conditions.Finally, a case study is conducted with data from 65 bus lines in Haidian District, Beijing.The results show that the indicator of the average stop spacing has the most significant impact on the coordination of resource allocations and passenger flow, with an effect of 0.901.The five bus lines that are difficult to rank with the traditional DEA method are distinguished based on the proposed method.Also, the evaluation results consistent with the design and operation of bus lines show the good application of the proposed model. -
表 1 指标体系
Table 1. Indicator system
一级指标 二级指标 η1基本布设 x11线路长度/km x12平均站点间距/km x13非直线系数 x14换乘站点比例% η2运营状况 x21发车间隔/min x22车辆定员/人 x23平均运送速度/(km/h) η3客流状况 x31日客运总量/(人·次) x32日客运周转量/(人·km) x33平均满载率/% 表 2 效度检验
Table 2. Validity test of the proposed model
模型类别 检验指标 显变量/变量 取值 构成型测量模型 VIF 线路长度 1.092 平均站点间距 1.291 非直线系数 1.205 换乘站点比例 1.182 发车间隔 1.427 车辆定员 1.108 平均运送速度 1.418 反映型测量模型 CR 客流状况 0.764 AVE 客流状况 0.525 Cronbach's α 客流状况 0.756 结构模型 R2 运营状况 0.548 客流状况 0.493 表 3 参数显著性检验
Table 3. Significance test of parameters
模型类别 模型类别显变量 参数 T统计量 构成型 线路长度 0.570 1.964 平均站点间距 0.850 6.388 非直线系数 -0.527 3.368 换乘站点比例 -0.298 2.869 发车间隔 0.556 1.996 车辆定员 0.379 2.913 平均运送速度 0.955 10.166 反映型 日客运总量 0.800 3.000 日客运周转量 0.557 2.807 平均满载率 0.790 1.997 表 4 路径系数显著性检验
Table 4. Significance test of path coefficient
影响路径 路径系数 T统计量 基本布设→运营状况 0.740 11.328 运营状况→客流状况 0.398 2.632 基本布设→客流状况 0.765 2.796 表 5 各指标影响效应值
Table 5. Effectiveness of the factors
潜变量 显变量 直接效应 间接效应 总效应 线路长度 0.436 0.168 0.604 基本 平均站点间距 0.650 0.250 0.901 布设 非直线系数 0.403 0.155 0.558 换乘站点比例 0.228 0.088 0.316 运营 发车间隔 0.221 0.221 车辆定员 0.151 0.151 状况 平均运送速度 0.380 0.380 客流 日客运总量 0.800 日客运周转量 0.557 状况 平均满载率 0.790 表 6 理想DMU指标值
Table 6. Indicator values of the ideal DMU
投人指标 理想DMU指标值 产出指标 理想DMU指标值 线路长度/km 9 日客运总量/人次 20 079 平均站点间距/km 0 日客运周转量(人,km) 44 135 非直线系数 1.36 平均满载率% 100 换乘站点比例% 26.11 发车间隔/mm 0 车辆定员/人 90 平均运送速度(km/h) 12.2 -
[1] 中国产业调研网. 2020—2026年中国城市公交行业现状分析与发展前景预测报告[R/OL]. (2019-10-29)[2020-02-11]. http://www.cir.cn/R_JiaoTongYunShu/56/ChengShiGongJiaoShiChangYuCeBaoGao.html.China Industry Research. 2020-2026 China urban public transport industry status analysis and development prospect forecast report[R/OL]. (2019-10-29)[2020-02-11]. http://www.cir.cn/R_JiaoTongYunShu/56/ChengShiGongJiaoShiChangYuCeBaoGao.html(. inChinese). [2] 吴瑶, 陆建, 邱红桐, 等. 基于TOPSIS模型城市常规公共交通适应性评价[J]. 交通信息与安全, 2014, 32(6): 153-158+165. doi: 10.3963/j.issn.1674-4861.2014.06.025WU Yao, LU Jian, QIU Xintong, et al. Evaluation of adaptability of urban public transit based on TOPSIS model[J]. Journal of Transport Information and Safety, 2014, 32(6): 153-158+165. (in Chinese). doi: 10.3963/j.issn.1674-4861.2014.06.025 [3] 玛依拉·艾则孜, 林强, 姚志刚. 基于DEA方法的城市公交与经济社会发展协调性研究[J]. 公路交通科技, 2017, 34(9): 130-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201709019.htmMAYILA Aizezi, LIN Qiang, YAO Zhigang. Study on coordination between urban public transport and economic and social development based on DEA method[J]. Journal of Highway and Transportation Research and Development, 2017, 34(9): 130-137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201709019.htm [4] ERICK G, CAMILO C, PAAVO M, et al. Urban form, transit supply, and travel behavior in Latin America: Evidence from Mexico's 100 largest urban areas[J]. Transport Policy, 2018(69): 98-105. [5] 朱丽, 陈峻, 何鹏. 基于主成分分析的城市空间形态与公交发展协调性研究[J]. 南京理工大学学报, 2019, 43(3): 353-362. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201903016.htmZHU Li, CHEN Jun, HE Peng. Coordination between urban spatial form and public transport development based on principal component analysis[J]. Journal of Nanjing University of Science and Technology, 2019, 43(3): 353-362. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201903016.htm [6] ZHANG Yingqun, SONG Rui, ROB N, et al. Identifying urban structure based on transit-oriented development[J]. Sustainability, 2019, 11(24): 1-21. [7] 谢天. 城市轨道交通与公交换乘协调评价[J]. 铁道运输与经济, 2017, 39(增刊2): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS2017S2021.htmXIE Tian. An evaluation on the coordination of the transfer between urban rail transit and bus[J]. Railway Transport and Economy, 2017, 39(S2): 119-126. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS2017S2021.htm [8] DOU X, GONG X, GUO X, et al. Coordination of feeder bus schedule with train service at integrated transport hubs[J]. Journal of the Transportation Research Board, 2017(2648): 103-110. http://www.researchgate.net/publication/321739771_Coordination_of_Feeder_Bus_Schedule_with_Train_Service_at_Integrated_Transport_Hubs [9] 冯树民, 申翔浩. 公交线路资源配置与高峰客流协调评价研究[J]. 交通运输系统工程与信息, 2015, 15(4): 129-133. doi: 10.3969/j.issn.1009-6744.2015.04.020FENG Shumin, SHEN Xianghao. Evaluation of coordination between bus lines resource allocation and peak passenger flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(4): 129-133. (in Chinese). doi: 10.3969/j.issn.1009-6744.2015.04.020 [10] 刘新民, 鲁晓燕, 孙秋霞. 公交线路资源配置与服务质量协调性评价[J]. 城市问题, 2017(9): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-CSWT201709011.htmLIU Xinmin, LU Xiaoyan, SUN Qiuxia. Evaluation of the coordination of bus lines resource allocation and service quality[J]. Urban Problems, 2017(9): 80-84. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSWT201709011.htm [11] PITAM S, KUMAR S A, PRIYAMVADA S, et al. Multimodal data modeling for efficiency assessment of social priority based urban bus route transportation system using GIS and data envelopment analysis[J]. Multimedia Tools and Applications, 2019(78): 23897-23915. [12] HAHN J, KIM H, KHO S. A DEA approach for evaluating the efficiency of exclusive bus routes[J]. Proceedings of the Eastern Asia Society for Transportation Studies, 2009, 27(6): 45-53. http://ci.nii.ac.jp/naid/130005036950 [13] CHARNES A, COOPER W, LEWIN A, et al. Data envelopment analysis theory, methodology and applications[J]. Journal of the Operational Research Society, 1997(48): 332-333. doi: 10.1057/palgrave.jors.2600342 [14] AMIN G R. Comments on finding the most efficient DMUs in DEA: an improved integrated model[J]. Computers & Industrial Engineering, 2009, 56(4): 1701-1702. [15] 祝凌曦, 肖雪梅, 李伟, 等. 基于改进DEA法的铁路应急预案编制绩效评价方法研究[J]. 铁道学报, 2011, 33(4): 1-6. doi: 10.3969/j.issn.1001-8360.2011.04.001ZHU Lingxiao, XIAO Xuemei, LI Wei, et al. Research on performance evaluation of compilation of railway emergency plan based on improved DEA method[J]. Journal of the China Railway Society, 2011, 33(4): 1-6. (in Chinese). doi: 10.3969/j.issn.1001-8360.2011.04.001 [16] 柯靖宇. 基于PLS偏好的DEA模型在公交线路服务能力评价中的应用研究[D]. 北京: 北京交通大学, 2017.KE Jingyu. Application of PLS-DEA model on the service ability evaluation of transit lines[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese). [17] 王卓, 王金详. 基于理想点法的DEA有效单元的效率评价及应用研究[J]. 科学管理研究, 2008, 26(1): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KXGY200801017.htmWANG Zhuo, WANG Jinxiang. Research on efficiency evaluation DEA units based on ideal point method and its application[J]. Scientific Management Reasearch, 2008, 26(1): 67-69. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXGY200801017.htm [18] 侯杰泰, 温忠麟, 成子娟, 等. 结构方程模型及其应用[M]. 北京: 教育科学出版社, 2004.HOU Jietai, WEN Zhonglin, CHENG Zijuan, et al. Structural equation model and its application[M]. Beijing: Educational Science Publishing House, 2004. (in Chinese). [19] 郭淑霞. 基于时变二源数据的城市公交调度协调模型与算法[D]. 北京: 北京交通大学, 2010.GUO Shuxia. Models and algorithms for urban transit dispatching coordination based on time-varying dual sourcing of data[D]. Beijing: Beijing Jiaotong University, 2010. (in Chinese). [20] 孟亚男. 基于PLS路径模型的上市公司高管薪酬影响因素研究[D]. 济南: 山东财经大学, 2013.MENG Yanan. The influence factors of executive compensation in listed companies based on PLS path modeling[D]. Jinan: Shandong University of Finance and Economics, 2013. (in Chinese).