A Quantitative Analysis on Repeatability of Residents'Bus Trip Chain and Travel Regularity
-
摘要: 作为城市交通的枢纽,公共交通系统承载了大量的居民出行。自动数据采集系统收集的IC卡数据包含了大量的乘客出行信息,通过这些数据可分析居民公交出行规律,进而优化公交服务。引入信息熵及熵率对居民公交出行链重复性进行量化,研究了基于量化指标分析居民公交出行规律的方法。通过出行地点状态标定,将乘客的出行链转化为离散的出行序列;利用信息熵和熵率对出行序列进行量化分析,得到出行重复性与量化指标的关系,即出行序列的信息熵越大,熵率越小,该乘客出行重复性越高,出行规律越强。基于重复性量化处理,以石家庄公交智能卡乘客出行数据为例,分别从群体和个人这2个方面对公交乘客的出行规律进行分析。结果表明,出行链重复性量化指标可以对出行规律的强弱进行直观判断。当乘客出行规律不明显,但信息熵高于样本均值2.53 bits、熵率低于样本均值1.13 bits/事件时,可通过进一步分析挖掘出乘客潜在出行规律。Abstract: As a hub system of urban transportation, public transportation carries a large number of residents'travel.The IC card data collected by the automatic data collection system contains a large number of passenger-travel information, which can be analyzed to optimize the public transport service.The information entropy and entropy rate are introduced to quantify the repeatability of the trip chain of public transport, with the method of analyzing the law of public transport travel based on the quantitative index studied.The trip chain of passengers is transformed into a discrete travel sequence through the state calibration of the travel place.Information entropy and the entropy rate are used to quantitatively analyze the travel sequence, thus obtaining the relationship between travel repeatability and quantitative index.In other words, the higher the information entropy of the travel sequence, the lower the entropy rate, the higher the passengers'travel repeatability, and the stronger the travel rule.Based on the repeatability of quantitative processing, the work takes the travel data of smart card passengers in Shijiazhuang as a case study to analyze the travel rules of bus passengers from group and individual.The results show that the quantification index of trip-chain repeatability can intuitively judge the strength of travel rules.When the information entropy is higher than the sample mean(2.53 bits)and the entropy rate is lower than the sample mean(1.13 bits/event)with the unobvious travel rules of passengers, the potential travel rules of passengers can be mined through further analysis.
-
Key words:
- urban traffic /
- bus trip chain /
- repeatability /
- travel sequence /
- travel regularity
-
表 1 持卡人出行记录
Table 1. Cardholder's travel records
交易时间 线路名 站点名称 2018-01-01 6:31 2路 北国商城 2018-01-01 10:22 2路 胸科医院 2018-01-02 6:54 2路 北国商城 2018-01-02 10:26 2路 胸科医院 2018-01-03 6:31 2路 水务集团 2018-01-03 6:49 2路 北国商城 2018-01-03 10:49 2路 胸科医院 2018-01-04 15:05 2路 北国商城 2018-01-06 06:25 2路 市城管委 2018-01-06 10:25 2路 水务集团 2018-01-06 11:08 27路 老年病医院 表 2 所选乘客出行重复性量化指标统计
Table 2. Quantitative indicators of the repeatability of selected passengers'travel
乘客群体
(样本量)总样本
(600)老年卡
(200)成人卡
(200)学生卡
(200)信息熵H(X) 2.509 2.379 2.539 2.610 熵率H '(X) 1.132 1.199 1.113 1.086 表 3 所选乘客出行重复性度量指标统计
Table 3. Quantitative indicators of the repeatability of selected passengers'travel
乘客卡号 A B C 信息熵H(X) 2.636 2.512 2.343 熵率H '(X) 1.073 1.124 1.165 -
[1] 呙娟. 基于公交数据的乘客出行特征分析[D]. 广州: 华南理工大学, 2016.GUO Juan. The travel characteristics analysis of passengers based on the bus data. [D]. Guangzhou: South China University of Technology, 2016. (in Chinese). [2] 何兆成, 余畅, 许敏行. 考虑出行模式和周期性的公交出行特征分析[J]. 交通运输系统工程与信息, 2016, 16(6): 135-141. doi: 10.3969/j.issn.1009-6744.2016.06.021HE Zhaocheng, YU Chang, XU Minxing. Analyzing methods of residents'travel characteristics considering travel patterns and periodicity[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(6): 135-141. (in Chinese). doi: 10.3969/j.issn.1009-6744.2016.06.021 [3] 王俊兵. 基于出行链的公交乘客出行特征分析[D]. 北京: 北京交通大学, 2017.WANG Junbing. Analysis of bus passenger travel characteristics based on trip chain. [D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese). [4] 朱亚迪, 陈峰, 王子甲等. 基于概率图模型的乘客出行链提取方法[J]. 吉林大学学报(工学版), 2019, 49(1): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201901008.htmZHU Yadi, CHEN Feng, WANG Zijia, et al. Passengers'trip chains extraction method based on probabilistic graphical[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(1): 60-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201901008.htm [5] KUSAKABE T, ASAKURA Y. Behavioural data mining of transit smart card data: A data fusion approach[J]. Transportation Research Part C: Emerging Technologies, 2014(46): 179-191. http://www.sciencedirect.com/science/article/pii/S0968090X14001612 [6] MA Xiaolei, WU Yaojan, WANG Yinhai, et al. Mining smart card data for transit riders'travel patterns[J]. Transportation Research Part C: Emerging Technologies, 2013(36): 1-12. http://www.sciencedirect.com/science/article/pii/S0968090X13001630 [7] 张晚笛, 陈峰, 王子甲, 等. 基于多时间粒度的地铁出行规律相似性度量[J]. 铁道学报, 2018, 40(4): 9-17. doi: 10.3969/j.issn.1001-8360.2018.04.002ZHANG Wandi, CHEN Feng, WANG Zijia, et al. Similarity measurement of metro travel rules based on multi-time granularities[J]. Journal of the China Railway Society, 2018, 40(4): 9-17(in Chinese). doi: 10.3969/j.issn.1001-8360.2018.04.002 [8] 杨光. 快速公交乘客出行的时空规律特征研究[D]. 成都: 西南交通大学, 2017.YANG Guang. Research on temporal and spatial characteristics of bus rapid transit. [D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese). [9] CHU K K A, CHAPLEAU R. Enriching archived smart card transaction data for transit demand modeling[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008(2063): 63-72. http://www.researchgate.net/publication/237903429_Enriching_Archived_Smart_Card_Transaction_Data_for_Transit_Demand_Modeling [10] MEDINA S A O. Inferring weekly primary activity patterns using public transport smart card data and a household travel survey[J]. Travel Behaviour and Society, 2018(12): 93-101. [11] 冯树民, 贾佃精, 胡宝雨. 中小城市居民出行链特征分析[J]. 武汉理工大学学报, 2015, 37(1): 51-55+94. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201501012.htmFENG Shumin, JIA Dianjing, HU Baoyu. Analysis of small and medium sized city residents trip chain characteristics[J]. Journal of Wuhan University of Technology, 2015, 37(1): 51-55+94. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201501012.htm [12] 李海波, 陈学武. 基于公交IC卡和AVL数据的换乘行为识别方法[J]. 交通运输系统工程与信息, 2013, 13(6): 73-79. doi: 10.3969/j.issn.1009-6744.2013.06.012LI Haibo, CHEN Xuewu. Transfer behavior identification method based on public transport IC card and AVL data[J]. Journal of Transportation Systems Engineering and Informa-tion Technology, 2013, 13(6): 73-79. (in Chinese). doi: 10.3969/j.issn.1009-6744.2013.06.012 [13] 李莹, 翁小雄. 基于公交IC卡和GPS数据的换乘识别方法[J]. 广西大学学报(自然科学版), 2017, 42(2): 579-586. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201702021.htmLI Ying, WENG Xiaoxiong. Transfer identification method based on bus IC card and GPS data[J]. Journal of Guangxi University(Natural Science Edition), 2017, 42(2): 579-586. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201702021.htm [14] BARRY J, NEWHOUSER R, RAHBEE A, et al. Origin and destination estimation in New York City with automated fare system data[J]. Transportation Research Record: Journal of the Transportation Research Board, 2002(1817): 183-187. http://www.researchgate.net/publication/239438647_Origin_and_Destination_Estimation_in_New_York_City_with_Automated_Fare_System_Data [15] MUNIZAGA M A, PALMA C. Estimation of a disaggregate multimodal public transport Origin-Destination matrix from passive smartcard data from Santiago, Chile[J]. Transportation Research Part C: Emerging Technologies, 2012(24): 9-18. http://smartsearch.nstl.gov.cn/paper_detail.html?id=d878caffe1164ca06b70136ef3ca11fc [16] CAI Haixiao, KULKARNI S R, VERDU S. Universal entropy estimation via block sorting[J]. IEEE Transactions on Information Theory, 2004, 50(7): 1551-1561. doi: 10.1109/TIT.2004.830771 [17] GAO Yun, KONTOYIANNIS I, ELIE B. Estimating the entropy of binary time series: methodology, some theory and a simulation study[J]. Entropy, 2008, 10(2): 71-99. http://arxiv.org/abs/0802.4363 [18] BARRY J J, FREIMER R, SLAVIN H The Burrows-Wheeler Transform: Data compression, suffix arrays, and pattern matchingBoston Springer 2008 ADJEROHD, BELLT C, MUKHERJEE A. The Burrows-Wheeler Transform: Data compression, suffix arrays, and pattern matching[M]. Boston: Springer, 2008.[19] BARRY J J, FREIMER R, SLAVIN H. Use of entry-only automatic fare collection data to estimate linked transit trips in New York city[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009(2112): 53-61. http://www.researchgate.net/publication/238197099_Use_of_Entry-Only_Automatic_Fare_Collection_Data_to_Estimate_Linked_Transit_Trips_in_New_York_City