Traffic Characteristics of Fully Enclosed Bypass Areas of Reconstruction and Extension of Two-lane Highways
-
摘要:
针对双车道公路改扩建中的S+直线段+S形绕行区、S+S形绕行区以及凸形绕行区,基于现场交通流参数调查与数据处理,统计分析了3类全封闭施工绕行区的车速变化特征,标定了速度-流量二次曲线模型并据此计算得到了绕行区各主要区段的自由流速度和实际通行能力值,采用Vissim仿真软件进行了绕行区的交通冲突仿真实验。研究结果表明:S+直线段+S形及S+S形绕行区的交通瓶颈路段均出现在驶入曲线段,凸形绕行区的瓶颈路段则出现在警告区末端。3类绕行区瓶颈路段的平均速度较上游正常路段降低了70%左右,通行能力则降低了50%左右。在交通冲突方面,在低流量时3类绕行区的交通冲突情况差异不大,当流量增大到500 pcu/h以上时,凸形绕行区的交通冲突明显比其他2类绕行区更为严重;综合通行能力、通行效率及交通安全水平3个方面,S+直线段+S形绕行区是1种比较适宜的绕行区形式。
Abstract:In order to study traffic characteristics of the S + straight-line section + S-type bypass area, S + S-type by-pass area, and convex bypass area in reconstruction and expansion of two-lane highways, a field study is carried out for collecting traffic volume data and statistically analyzing speed variation of the three bypass areas. Then, the free flow speed and actual capacity of the main sections of the detour areas are calculated, in accordance with the calibration of the speed-flow conic model, and a simulation study for the traffic conflicts in the detour areas is carried out using Vissim. Study results show that the traffic bottleneck sections of the S + straight-line section + S type and S + S type bypass area appear in the driving curve section, while the bottleneck section of the convex bypass area presents at the end of the warning area. The average speed of the bottleneck sections in the three types of bypass areas is about 70% lower than that of the normal upstream sections, and the traffic capacity is reduced by about 50%. There is little difference in the traffic conflicts among the three types of bypass areas at low-volume flow. When the flow increases to above 500 pcu/h, the degree of traffic conflicts in the convex bypass area is much more serious than that of the other two types. In terms of comprehensive capacity, traffic efficiency, and traffic safety level, S + straight line segment + S-type bypass area is found to be more suitable than the others.
-
Key words:
- traffic engineering /
- traffic characteristics /
- bypass area /
- capacity /
- traffic efficiency /
- traffic safety level /
- Vissim simulation
-
表 1 各全封闭施工绕行区各区段交通运行状态
Table 1. Traffic operation of each section in each fully closed construction bypass area
S+直线段+S形绕行区 S+S形绕行区 凸形绕行区 警告区 前端 驾驶员已获知施工绕行区的存在,车辆根据限速标准,逐次减速行驶车速降低至目标值,交通运行指标继续下降 α角较大,车速降低至较低值 末端 驶入曲线段 车辆行驶轨迹为S形,需进行连续转向,舒适性差 施工区段 线形为直线,运行平稳,车辆有加速行驶的现象 线型为2条S形曲线的衔接区段,没有缓冲过渡的直线段,车辆均处于曲线行驶状态 整体线形呈凸曲线,不符合驾驶员生理、心理特性,车辆运行条件较差 驶出曲线段 线形为S形,由于驶出曲线段末端与终止区存在一定的弯道,车辆运行速度降低 终止区段 逐渐恢复至正常的行车条件,交通运行状态逐渐摆脱施工绕行区的影响 表 2 绕行区各区段车速
Table 2. Speed of each section in the bypass areas
km/h 绕行区类型 区段 设计速度 实际限速值 平均速度 85%位车速 15%位车速 上游正常路段 80 80 70 75 60 警告区 前端 80 40 69 73 58 末端 80 20 36 44 25 S+直线段+S形绕行区 驶人曲线段 - 20 23 29 20 施工区 - 20 29 37 22 驶出曲线段 - 20 23 29 20 终止区 80 20 36 44 25 上游正常路段 80 80 70 75 60 警告区 前端 80 40 69 73 58 末端 80 20 31 40 23 S+S形绕行区 驶人曲线段 - 20 22 24 15 施工区 - 20 29 36 21 驶出曲线段 - 20 22 24 15 终止区 80 20 31 40 23 上游正常路段 80 80 70 75 60 警告区 前端 80 40 69 73 58 末端 80 20 20 26 13 凸形绕行区 驶人曲线段 - 20 21 30 15 施工区 - 20 24 32 17 驶出曲线段 - 20 20 30 15 终止区 80 20 20 26 13 表 3 3类绕行区主要区段通行能力
Table 3. Capacity of main sections in three types of bypass areas
绕行区类型 区段 自由流速度/(km/h) 实际通行能力/(pcu/h) 较上1个区段变化幅度/% S+直线段+S型绕行区 警告区末端 44.5 810 -15.9 驶入曲线段 32.6 671 -17.2 施工区 38.0 705 +5.1 S+S形绕行区 警告区末端 39.5 724 -24.8 驶入曲线段 25.3 598 -17.4 施工区 38.5 618 +3.3 凸形绕行区 警告区末端 26.0 608 -36.9 驶入曲线段 28.1 663 +9.0 施工区 29.1 683 +3.0 表 4 3类绕行区基于TTC的冲突数统计结果
Table 4. Statistical results of the number of conflicts based on TTC in three types of bypass areas
绕行区类型 区域冲突数/个 警告区 警告区末端 驶入曲线段 施工区 驶出曲线段 总计 S+直线段+S型 2 13 25 0 18 58 S+S形 1 17 29 0 25 72 凸形 10 47 12 10 7 86 -
[1] WALECZEK H, GEISTEFELDT J, CINDRIC D, et al. Traffic flow at a freeway work zone with reversible median lane[J]. Transportation Research Procedia, 2016(15): 257-266. http://daneshyari.com/article/preview/1106113.pdf [2] HEASLIP K, KONDYLI A, ARGUEA D, et al. Estimation of freeway work zone capacity through simulation and field data[J]. Transportation Research: Record Journal of the Transportation Research Board, 2009(2130): 16-24. http://trb.metapress.com/content/367467184n33384q/fulltext.pdf?page=1 [3] EDARA P, CHATTERJEE I. Multivariate regression for estimating driving behavior parameters in work zone simulation to replicate field capacities[J]. Transportation Letters, 2010, 2 (3): 175-186. doi: 10.3328/TL.2010.02.03.175-186 [4] RAVANI B, WANG C. Speeding in highway work zone: An evaluation of methods of speed control[J]. Accident Analysis & Prevention, 2018, 113(4): 202-212. http://www.onacademic.com/detail/journal_1000040236358010_c2a9.html [5] KACHROOA P, SHARMA A. Theory of safety surrogates using vehicle trajectories in macroscopic and microscopic settings: Application to dynamic message signs controlled traffic at work zones[J]. Transportation Research Part C: Emerging Technologies, 2018, 91(6): 62-76. http://www.sciencedirect.com/science/article/pii/S0968090X18303887 [6] YEOM C, HAJBABAIE A, ROUPHAIL N M, et al. Freeway work zone free-flow speed model development[J]. Institute of Transportation Engineers, 2017, 87(11): 38-44. http://www.researchgate.net/publication/324131765_Freeway_work_zone_free-flow_speed_model_development [7] BANERJEE S, JEIHANI M, KHADEM N K. Influence of work zone signage on driver speeding behavior[J]. Journal of Modern Transportation, 2019, 27(1): 56-64. http://doc.paperpass.com/journal/20190022xdjtxbywb.html [8] SAHA T, SISIOPIKU V P. Assessing work zone traffic control options for 3-to-1 lane closures[J]. Journal of Transportation Technology, 2020(1): 50-64. http://www.ixueshu.com/document/2e1c32172b661dd83cbe65b1422b8af0318947a18e7f9386.html [9] HWANG D H, CHEOL O H, PARK H J, et al. Safety evaluation of traffic merging control methods for freeway work zone[J]. Journal of Korean Society of Transportation, 2016, 34 (3): 263-277. doi: 10.7470/jkst.2016.34.3.263 [10] QI Y, ZHAO Q. Safety impacts of signalized lane merge control at highway work zones[J]. Transportation Planning and Technology, 2017, 40(5): 577-591. doi: 10.1080/03081060.2017.1314499 [11] RAMADAN O E, SISIOPIKU V P. Evaluation of merge control strategies at interstate work zones under peak and off-peak traffic conditions[J]. Journal of Transportation Technologies, 2016, 6(3): 118-130. doi: 10.4236/jtts.2016.63011 [12] JEHN N L, TUROCHY R E. Calibration of vissim models for rural freeway lane closures: novel approach to the modification of key parameters[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2673(5): 574-583. doi: 10.1177/0361198119842824 [13] 孟祥海, 张龙钊, 李生龙. 四车道高速公路部分占用超车道交通控制区交通特性及通行能力研究[J]. 交通运输系统工程与信息, 2020, 20(2): 218-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202002033.htmMENG Xianghai, ZHANG Longzhao, LI Shenglong. Traffic characteristics and capacity of overtaking lane partly occupied traffic control zone of four-lane freeway[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 218-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202002033.htm [14] 于仁杰, 马荣国, 王俊凌, 等. 高速公路施工区层级限速问题研究[J]. 中国公路学报, 2013, 26(6): 150-156. doi: 10.3969/j.issn.1001-7372.2013.06.021YU Renjie, MA Rongguo, WANG Junling, et al. Research on speed limit in construction area of expressways[J]. China Journal of Highway and Transport, 2013, 26(6): 150-156. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.06.021 [15] 吴彪, 杨忠振, 谢军, 等. 高速公路施工区路段车速分布特性研究[J]. 交通运输系统工程与信息, 2016, 16(2): 219-224+231. doi: 10.3969/j.issn.1009-6744.2016.02.034WU Biao, YANG Zhongzhen, XIE Jun, et al. Study on speed distribution characteristics of expressway construction area[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 219-224+231. (in Chinese) doi: 10.3969/j.issn.1009-6744.2016.02.034 [16] 李晓虎, 麦乐, 任杰, 等. 高速公路施工区自动车辆行驶轨迹优化方法[J]. 交通信息与安全, 2020, 38(3): 40-47. doi: 10.3963/j.jssn.1674-4861.2020.03.006LI Xiaohu, MAI Le, REN Jie, et al. A trajectory optimization method of automatic vehicles at freeway work zone[J]. Journal of Transport Information and Safety, 2020, 38(3): 40-47. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.03.006 [17] 李耘, 张生瑞, 茹渑博. 高速公路施工区车流跟驰追尾冲突风险[J]. 长安大学学报(自然科学版), 2017, 37(2): 81-88. doi: 10.3969/j.issn.1671-8879.2017.02.010LI YUN, ZHANG Shengrui, RU Mianbo. Car following rear-end conflic risk of freeway work zone[J]. Journal of Chang'an University(Natural Science Editon), 2017, 37(2): 81-88. (in Chinese) doi: 10.3969/j.issn.1671-8879.2017.02.010 [18] 邵长桥, 马森, 罗凯, 等. 高速公路施工区中间带开口长度与交通运行特性研究[J]. 公路交通科技, 2020, 37(10): 127-133. doi: 10.3969/j.issn.1002-0268.2020.10.014SHAO Changqiao, MA Sen, LUO Kai, et al. Study on length and traffic characteristics of middle belt opening in expressway construction area[J]. Journal of Highway Traffic Science and Technology, 2020, 37(10): 127-133. (in Chinese) doi: 10.3969/j.issn.1002-0268.2020.10.014 [19] 蒋若曦, 朱顺应, 王磊, 等. 基于交通冲突的高速公路施工区安全评价[J]. 中国安全科学学报, 2019, 29(6): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201906022.htmJIANG Ruoxi, ZHU Shunying, WANG Lei, et al. Traffic safety assessment of highway workzone based on traffic conflict[J]. China Safety Science Journal, 2019, 29(6): 116-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201906022.htm [20] 孟祥海, 郑来, 毕海峰, 等. 高速公路半幅封闭施工区交通特性与交通冲突特性研究[J]. 中国公路学报, 2013, 26(2): 140-146. doi: 10.3969/j.issn.1001-7372.2013.02.020MENG Xianghai, ZHENG Lai, BI Haifeng, et al. Research on traffic characteristics and traffic conflict characteristics of expressway semi-closed construction area[J]. China Journal of Highway and Transport, 2013, 26(2): 140-146. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.020