Optimization of Single-berth Curbside Bus Stops Considering Impacts of Non-motorized Vehicles
-
摘要:
为了降低非机动车对沿人行道设置的公交停靠站周边交通的影响,对直线式单泊位公交停靠站设置进行优化。选取重庆市6个沿人行道设置的单泊位公交停靠站进行调研,分析非机动车车道宽度、公交车停靠站长度、当量交通量、非机动车速度等参数与3类冲突率(非机动车与公交车3种形态的追尾与横向冲突率)的相关关系,拟合得到回归方程。根据回归方程和相关性系数建立交通冲突预测模型,并对模型进行验证,预测模型误差均小于10%。研究表明:当非机动车道设置宽度在3.5~4.0 m、直线式单泊位公交停靠站设置长度在16~18 m时,3类冲突率最低。当量交通量达到700 pcu/h之后,冲突率趋于平稳;此时非机动车速度仍不宜大于6 m/s。选取2个公交车停靠站进行冲突率预测,并对其进行安全等级评价。以冲突率最低值作为约束条件,对沿人行道设置的直线式单泊位公交停靠站进行优化。研究成果可为公交停靠站周边区域的交通管理和规划设计提供理论依据。
Abstract:Single-berth curbside bus stops are optimized to reduce the impacts of non-motorized vehicles on traffic flows around the bus stops along with sidewalks. Six single-berth curbside bus stops in the City of Chongqing are selected for case studies, with the analysis of the correlation among parameters including non-motorized vehicle lane width, length of bus stop, equivalent traffic volume, non-motorized vehicle speed, and three types of conflict rates(three types of rear-end conflict and horizontal conflict rates of non-motor vehicles and buses). In addition, regression models are developed in order to predict traffic conflicts. It is found that the prediction error of the prediction model is less than 10%. It is also found that when the width of the non-motorized lane is 3.5~4.0 m and the length of the single-berth curbside bus stop is 16~18 m, the conflict rate of the three types is the lowest. When the equivalent traffic volume reaches 700 pcu/h, the conflict rate becomes stable, and the speed of non-motorized vehicles should not be more than 6 m/s. Two bus stops are selected to predict the conflict rate and evaluate their safety levels. The lowest value of the conflict rate is used as a constraint to optimize the linear single-berth bus stops along the sidewalk. It is believed that the conclusions of this study provide a theoretical basis for traffic management around bus stops and planning, and design of related facilities.
-
Key words:
- traffic engineering /
- bus stop /
- optimal design /
- traffic conflict /
- non-motor vehicle interference
-
表 1 公交停靠站交通冲突率估算值与实际值对比结果
Table 1. Comparison results of traffic conflicts between estimated and actual values at bus stops
冲突率 估算值
(次/×103 pcu)实际值
(次/×103 pcu)误差/
%第一类冲突率 72.5 114.6 58.2 第二类冲突率 75.3 110.8 62.7 第三类冲突率 4.0 3.6 6.4 表 2 安全等级划分
Table 2. Safety classification
安全分级 安全等级 冲突率范围 1 特别安全 ≤ 80 2 安全 80 ≤ x < 180 3 临界安全 180 ≤ x < 230 4 不安全 230 ≤ x < 350 5 特别危险 ≥ 350 表 3 实例公交停靠站几何特性及交通流特性
Table 3. Geometric characteristics and traffic flow characteristics of sampled bus stops
公交站 几何特征 交通流特性 非机动车道宽度/m 公交停靠站长度/m 非机动车速度(m/s) 当量交通量(pcu/h) 虎溪站 3.3 14 3.8 18 大学城U城站 3.8 16 1.7 20 表 4 实例公交站交通冲突预测对比
Table 4. Comparison of prediction of the traffic conflicts of sampled bus stops
公交站 交通冲突率/(次/x103 pcu) 第一类冲突 第二类冲突 第三类冲突 总冲突率 虎溪站 109.9 122.3 42.1 274.3 大学城U城站 59.9 76.6 23.5 160.1 表 5 虎溪站公交停靠站改善建议值
Table 5. Suggested design values for improving Huxi bus stop
公交站 非机动车道宽度/m 公交停靠站长度/m 非机动车速度(m/s) 虎溪站 3.5 17 3 表 6 虎溪站改善后交通冲突率预测值
Table 6. Predicted values of traffic conflict rates after the improvement of Huxi stop
公交站 交通冲突率(次/×103 pcu) 第一类冲突 第二类冲突 第三类冲突 总冲突 虎溪站 89.6 99.3 22.4 211.4 -
[1] JILLA R J. Effects of bicycle lanes on traffic flow: joint highway research project jhpr-74-10[R]. West Lafayette: Purdue University School of Civil Engineering, 1974. [2] CAZORLA P. Cycling and public transportation sharing space: An option to increase cycling ridership[J]. MASKNA, 2017, 8(2): 71-81. doi: 10.18537/mskn.08.02.06 [3] REID S, GUTHRIE N. Cycling in bus lanes : transport research laboratory report trl610[R]. United Kingdom: Charging and Local Transport Division, Department for Transport. 2004. [4] ZHAO X M, JIA B, GAO Z Y, et al. Traffic interactions between motorized vehicles and nonmotorized vehicles near a bus stop[J]. Journal of Transportation Engineering, 2009, 135(11): 894-906. doi: 10.1061/(ASCE)TE.1943-5436.0000056 [5] 杜少娜, 彭宏勤, 李妙君, 等. 城市公交站点自行车对公交车的干扰行为研究[J]. 交通运输系统工程与信息, 2011, 11(增刊1)126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT2011S1019.htmDU Shaona, PENG Hongqin, LI Miaojun, et al. Study on the impact of bicycles on public buses at urban bus stops[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(S1): 126-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT2011S1019.htm [6] 王欢. 考虑非机动车影响的公交停靠特性分析与仿真评价研究[D]. 北京: 北京交通大学, 2015.WANG Huan. Research on bus stop characteristics analysis and simulation considering the influence of non-motor vehicles[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese) [7] 韩志玲, 严亚丹, 王东炜. 站点处非机动车对公交车辆停靠过程影响分析[J]. 北京工业大学学报, 2016, 42(7): 1077-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201607018.htmHAN Zhiling, YAN Yadan, WANG Dongwei. Impact analysis of non-motor vehicles on buses' stopping process at bus stops[J]. Journal of Beijing University of Technology, 2016, 42 (7): 1077-1081. (inChinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201607018.htm [8] ZHAO D, WANG W, ZHENG Y, et al. Evaluation of interactions between buses and bicycles at stops[J]. Transportation Research Record, 2014(1) : 11-18. [9] LU L, SU Y, YAO D, et al. The delay of bus near a stop when mixed traffic flow is considered[C]. Intelligent Vehicles Symposium(IV), San Diego, CA, USA: IEEE, 2010. [10] LUO T M, YANG Z, DING H Y, et al. Cellular automata based modeling for evaluating different bus stop designs in China[J]. Discrete Dynamics in Nature and Society, 2015(12): 1-10. [11] 都舒. 基于TCT的非机动车公交站安全性分析[D]. 北京: 北京交通大学, 2010.DU Shu. Safety analysis of non-motor vehicle in bus stop based on TCT[D]. Beijing: Beijing Jiaotong University, 2010. (in Chinese) [12] 王柯婷. 公交站区域自行车交通特性及自行车延误研究[D]. 西安: 西安建筑科技大学, 2019.WANG Keting. Research on the bicycle traffic characteristics and bicycle delay model in bus station area[D]. Xi' an: Xi' an University of Architecture and Technology, 2019(in Chinese) [13] 罗铮, 温筱婷. 城市公交站交通冲突分析及对策[J]. 交通运输工程与信息学报, 2007(3): 112-115. doi: 10.3969/j.issn.1672-4747.2007.03.021LUO Zheng, WEN Xiaoting. Analysis and strategy on traffic conflict at city bus station[J]. Journal of Transportation Engineering and Information, 2007(3): 112-115. (in Chinese) doi: 10.3969/j.issn.1672-4747.2007.03.021 [14] 范爱华. 混行公交站点非机动车的不安全行为及其影响分析[D]. 北京: 北京交通大学, 2015.FAN Aihua. Unsafe behavior and impact analysis of non-motor vehicles near bus stop with mixed traffic flow[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese) [15] 李萌. 公交站点区域非机动车骑行特性及影响因素研究[D]. 西安: 长安大学, 2018.LI Meng. Characteristics and influencing factors of non-motorized riding on public transport stations[D]. Xi' an: Chang' an University, 2018. (in Chinese) [16] 邵海鹏, 李静娴, 谢沛, 等. 基于贝叶斯网络的公交停靠站时两轮车穿插行为研究[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(6): 969-973. doi: 10.3963/j.issn.2095-3844.2017.06.016SHAO Haipeng, LI Jingxian, XIE Pei, et al. Research on crossing behavior of two-wheeler at bus station based on Bayesian network[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2017, 41 (6): 969-973. (inChinese) doi: 10.3963/j.issn.2095-3844.2017.06.016 [17] 田春春. 常规公交停靠站优化设置研究[D]. 长沙: 中南大学, 2009.TIAN Chunchun. Research on establishment optimization of conventional bus stop[D]. Changsha: Central South University, 2009. (in Chinese) [18] 孙明东. 北京城市二环辅路公交车停靠站优化设计及应用研究[D]. 北京: 北京交通大学, 2012.SUN Mingdong. An optimal design and application of bus stop on side roads of second ring expressway in Beijing[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)