An Optimization Method for Scheduling Autonomous Potable Water Service Vehicles at Airfields
-
摘要: 针对机场航班延误和拥堵现象日益严重以及地面特种车辆服务航班效率低且存在较高安全隐患的问题,研究了面向机场飞行区无人驾驶清水车的优化调度方法。通过将无人驾驶清水车服务航班硬时间窗与梯形模糊隶属度函数相结合构建航班服务水平函数,结合传统C-W节约算法,考虑无人驾驶清水车服务机场航班的时间规则,实现了无人驾驶清水车总行驶路程最短以及航班服务水平最高的目标。考虑服务航班数量总和,衡量每辆无人驾驶清水车的服务航班阈值,并提出了服务航班任务量的差异评价值。新算法在C-W节约算法路径优化结果的基础上对未达到服务航班容量极限的子路径进一步优化,实现了所需服务航班的无人驾驶清水车数量最少、服务航班数量差异化最小的目标。以国内某机场航班信息为例,结果表明:与单车单服务模式相比,服务总路程节省59.36%,车辆使用减少84车次,航班服务水平为93.78%,航班任务量的差异评价值由93.32%降低至43.96%;与基准算法相比,新算法在实现任务量均衡的同时并不会增加总行驶路程,且将服务航班任务量的差异评价值由2.72降低至0.44,显著提高了车辆服务航班任务量的均衡性。Abstract: Due to increasingly serious flight delay and congestion and the issues of a low level of service and potential role of safety hazards of special vehicles at airports, an optimization method for scheduling autonomous potable water service (APWS) vehicles at airfields is studied. The level of service function for flights is developed by combining the hard time window of flights with a trapezoidal fuzzy membership function. Combined with the traditional C-W saving algorithm, the level of service function considers the time required for APWS vehicles serving flight, and with an objective to achieve the shortest total driving distance and the highest level of service to flights. Then, the total number of the flights to be served is used to measure the amount of work of each APWS vehicles, and an evaluation score for the amount of service work is proposed. Based on optimization results of C-W saving algorithm, the proposed algorithm further optimizes the sub-paths that do not reach the capacity limit of service flights, so as to achieve the minimum number of APWS vehicles and minimizing the difference in the number of flights served. A case study is carried out at a domestic airport, the results show that compared with the scenario with a single vehicle and uncoordinated service to flights, the total traveling distance of APWS vehicles is saved by 59.36%, 84 vehicle trips are saved, the level of service to flights reaches to 93.78%, and the difference of evaluation scores for the amount of service work is reduced from 93.32% to 43.96%. In contrast to the baseline algorithm, the workload of APWS vehicles can be balanced without increasing the total traveling distance, and the difference of evaluation scores for the amount of service work is reduced from 2.72 to 0.44, which significantly improves the workload balance of APWS vehicles.
-
表 1 飞机分类及服务参数
Table 1. Aircraft classification and service parameters
飞机类型 座位数/座 清水需求量/m3 服务时间/min C 61~150 1 5 D 151~250 2 5 E 251~500 3 8 表 2 部分始发航班时间窗
Table 2. Departure flight time window
航班停机位 预计离港时刻 ei(时刻) fi(时刻) 418 08:05 06:45 07:40 113 08:15 06:55 07:50 110 08:30 07:10 08:05 116 08:35 07:15 08:10 201 09:00 07:40 08:35 207 09:15 07:55 08:50 217 10:35 09:15 10:10 417 10:50 09:30 10:25 221 11:15 09:55 10:50 表 3 部分过站航班时间窗
Table 3. Partial transit flight time window
航班停机位 预计到港时刻 预计离港时刻 ei(时刻) fi(时刻) 226 08:30 09:30 08:44 09:05 224 09:15 10:25 09:29 10:00 218 09:35 10:35 09:49 10:10 228 09:45 11:05 09:59 10:40 220 09:55 11:20 10:09 10:55 118 10:40 11:40 10:54 11:15 214 10:55 12:00 11:09 11:35 202 11:10 12:15 11:24 11:50 205 11:30 12:50 11:44 12:25 表 4 无人驾驶清水车的服务子路径结果
Table 4. Service sub-path results of driverless potable water vehicles
子路径序号 服务航班序号 清水量/m3 子路径节约值/m 航班开始服务时间 航班结束服务时间 R1 0-1-3-5-11-13-0 5 8 240 06:40 07:15 R2 0-30-35-38-40-0 5 7 120 09:44 10:10 R3 0-41-32-0 5 2 640 10:09 10:23 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ R12 0-2-4-10-9-0 4 1 920 06:40 07:05 R13 0-6-7-0 4 400 06:50 07:01 R14 0-28-34-31-0 4 5 280 09:29 09:54 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ R19 0-15-33-0 3 2 400 09:04 09:20 R20 0-16-17-18-0 3 1 760 07:40 08:00 R21 0-83-84-0 3 1 520 14:24 14:39 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ R26 0-85-87-0 2 1 360 15:04 15:17 R30 0-98-0 2 0 15:49 15:54 R31 0-106-0 2 0 17:14 17:19 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ R52 0-78-0 1 0 13:59 14:04 R53 0-39-0 1 0 09:50 09:55 R54 0-112-0 1 0 18:14 18:19 表 5 任务量调整后的无人驾驶清水车服务子路径结果
Table 5. Service sub-path results of driverless potable water vehicles after task volume adjustment
子路径序号 航班服务序号 清水量/m3 路径节约值/m 航班开始服务时间 航班结束服务时间 R1 0-1-3-5-11-13-0 5 8 240 06:40 07:15 R2 0-30-35-38-40-0 5 7 120 09:44 10:10 R3 0-41-32-0 5 2 640 10:09 10:23 R4 0-42-43-46-64-0 5 3 760 10:44 11:09 R5 0-44-61-48-47-68-0 5 8 240 10:54 11:25 R6 0-49-50-51-55-57-0 5 4 880 11:24 11:55 R7 0-58-56-60-62-59-0 5 4 560 12:04 12:33 R8 0-76-80-79-81-0 5 5 920 13:54 14:22 R9 0-95-82-99-0 5 5 280 13:39 13:55 R10 0-96-97-104-102-0 5 6 960 16:29 16:59 R11 0-108-109-110-111-0 5 8 720 17:54 18:15 R12 0-15-33-24-25-0 5 5 120 09:04 09:27 R13 0-21-26-27-29-0 5 3 360 08:44 09:13 R14 0-28-34-31-67-0 5 6 400 09:29 10:09 R15 0-52-65-53-54-0 5 1 280 11:05 11:44 R16 0-66-70-69-0 5 3 210 12.34 12:55 R17 0-83-84-85-87-0 4 7 080 14:24 15:17 R18 0-86-88-91-92-0 4 5 760 15:19 15:46 R19 0-100-105-103-106-0 4 4 120 16:44 17:29 R20 0-72-107-73-71-0 4 6 880 12:49 13:20 R21 0-2-4-10-9-0 4 1 920 06:40 07:05 R22 0-6-7-0 4 400 06:50 07:01 R23 0-8-12-14-45-0 4 1 720 06:55 07:29 R24 0-16-17-18-22-0 4 2 560 07:40 08:15 R25 0-77-101-74-78-0 4 4 120 13:09 14:04 R26 0-36-39-37-0 4 840 09:30 10:14 R27 0-90-89-93-0 4 960 15:24 15:46 R28 0-113-112-0 2 0 18:09 18:25 R29 0-63-94-0 2 1 280 12:19 12:39 -
[1] 余清. 民航云南安监局参与完善长水国际机场航班延误应急管理案例研究[D]. 成都: 电子科技大学, 2016.YU Q. Yunnan bureau of work safety of CAAC participated in the case study of improving the emergency management of flight delay in Changshui international airport[D]. Chengdu: University of Electronic Science and Technology of China, 2016. (in Chinese) [2] 汤新民, 吴淼, 高尚峰, 等. 机场场面多传感器多轴向感知信号的融合方法[J]. 交通信息与安全, 2016, 34(2): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201602003.htmTANG X M, WU M, GAO S F, et al. A muti- axis signal fusion approach using multiple sensors of the aerodrome surface[J]. Journal of Transport Information and Safety, 2016, 34(2): 17-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201602003.htm [3] 樊琳琳. 大型机场地勤服务中的车辆调度问题的初步研究[D]. 沈阳: 东北大学, 2009.FAN L L. A preliminary study on vehicle scheduling in ground service of large airports[D]. Shenyang: Northeastern University, 2009. (in Chinese) [4] 黄鹂诗. 基于SIMIO的机坪车辆调度仿真研究[D]. 南京: 南京航空航天大学, 2013.HUANG L S. SIMIO-based vehicle scheduling simulation research[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese) [5] 何丹妮. 大型进场航班过站地面服务车辆调度问题研究-以摆渡车为例[D]. 北京: 北京交通大学, 2018.HE D N. Research on the dispatching of ground service vehicles for large inbound flights: A case study of ferries[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese) [6] 李猷. 基于多策略的机场地面保障车辆调度问题研究[D]. 西安: 西安理工大学, 2019.LI Y. Research on airport ground service vehicles scheduling problem based on multi-strategy[D]. Xi'an: Xi'an University of Technology, 2019. (in Chinese) [7] 吴建波. 基于多Agent的机场地面服务车辆调度方法研究[D]. 天津: 中国民航大学, 2015.WU J B. Research on airport ground service vehicle scheduling method based on multi-agent[D]. Tianjin: Civil Aviation University of China, 2015. (in Chinese) [8] 冯霞, 任子云. 基于遗传算法的加油车和摆渡车协同调度研究[J]. 交通运输系统工程与信息, 2016, 16(2): 155-163. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201602024.htmFENG X, REN Z Y. Collaborative scheduling of fuelling vehicle and ferry vehicle based on genetic algorithm[J]. Transportation System Engineering and Information, 2016, 16(2): 155-163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201602024.htm [9] 殷龙, 衡红军. 基于最邻近算法的几场特种车辆调度应用研究[J]. 计算机技术与发展, 2016, 26(7): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201607034.htmYIN L, HENG H J. Application research of special vehicle scheduling based on the nearest neighbor algorithm[J]. Computer Technology and Development, 2016, 26(7): 151-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201607034.htm [10] XING Z, LIAN G. Cooperative game theoretical research for aircraft deicing operation scheduling[C]. Intelligent Control and Automation, Beijing, China: IEEE, 2012. [11] DU J Y, BRUNNER J O, KOLISCH R. Planning towing processes at airports more efficiently[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 70(10): 293-304. [12] NORIN A, VARBRAND P. Scheduling de-icing vehicles within airport logistics: A heuristic algorithm and performance evaluation[J]. Social Science Electronic Publishing, 2012, 63(8): 1116-1125. [13] HESS M, SASKA M, SCHILLING K. Autonomous multi-vehicle formations for cooperative airfield snow shoveling[C]. European Conference on Mobile Robots. Barcelona, Spain: IEEE, 2013. [14] ZHAO P, HAN X, WAN D. Evaluation of the airport ferry vehicle scheduling based on network maximum flow model[J]. Omega, 2021, 99(6): 1-11. [15] PADRON S, GUIMARANS D, JOSE R, et al. A bi-objective approach for scheduling ground-handling vehicles in airports[J]. Computers and Operations Research, 2016, 71(7): 34-53. [16] SIGLER D, WANG Q, LIU Z, et al. Route optimization for energy efficient airport shuttle operations: A case study from Dallas Fort worth international airport[J]. Journal of Air Transport Management, 2021, 94(9): 67-79. [17] BIJJAHALLI S, RAMASAMY S, SABATINI R. A novel vehicle-based GNSS integrity augmentation system for autonomous airport surface operations[J]. Journal of Intelligent & Robotic Systems, 2017, 87(2): 379-403. [18] 李霞, 汪一戈, 崔洪军, 等. 智能网联环境下复杂异质交通流稳定性解析[J]. 交通运输系统工程与信息, 2020, 20(6): 114-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202006015.htmLI X, WANG Y G, CUI H J, et al. Stability analysis of complex heterogeneous traffic flow under connected and autonomous environment[J]. Transportation System Engineering and Information, 2020, 20(6): 114-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202006015.htm [19] 陈壮壮, 罗莉华. 网联自动驾驶车辆通过信号交叉口的速度轨迹优化[J]. 交通信息与安全, 2021, 39(4): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202104013.htmCHENZZ, LUOLH. Speed trajectory optimization of connected autonomous vehicles at signalized intersections[J]. Journal of Transport Information and Safety, 2021, 39(4): 92-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202104013.htm [20] 但正刚, 蔡临宁, 杜丽丽, 等. 车辆路径优化问题的均衡性[J]. 清华大学学报(自然科学版), 2006, 46(11): 1945-1948. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200611038.htmDAN Z G, CAI L N, DU L L, et al. Load balancing of the vehicle routing problem[J]. Journal of Tsinghua University (Natural Science Edition), 2006, 46(11): 1945-1948. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200611038.htm [21] 中国民用航空局. 航班安全运行保障标准[S]. 北京: 民航局综合司, 2020.Civil Aviation Administration of China. Flight safety operation guarantee standard[S]. Beijing: General Affairs Department of CAAC, 2020. (in Chinese)