留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑连锁冲突的城市公交车行车风险量化分析方法

李熙莹 梁靖茹 郝腾龙

李熙莹, 梁靖茹, 郝腾龙. 考虑连锁冲突的城市公交车行车风险量化分析方法[J]. 交通信息与安全, 2022, 40(3): 19-29. doi: 10.3963/j.jssn.1674-4861.2022.03.003
引用本文: 李熙莹, 梁靖茹, 郝腾龙. 考虑连锁冲突的城市公交车行车风险量化分析方法[J]. 交通信息与安全, 2022, 40(3): 19-29. doi: 10.3963/j.jssn.1674-4861.2022.03.003
LI Xiying, LIANG Jingru, HAO Tenglong. A Method for Quantitatively Analyzing Risks Associated with the Operation of Urban Buses Considering Chained Conflicts[J]. Journal of Transport Information and Safety, 2022, 40(3): 19-29. doi: 10.3963/j.jssn.1674-4861.2022.03.003
Citation: LI Xiying, LIANG Jingru, HAO Tenglong. A Method for Quantitatively Analyzing Risks Associated with the Operation of Urban Buses Considering Chained Conflicts[J]. Journal of Transport Information and Safety, 2022, 40(3): 19-29. doi: 10.3963/j.jssn.1674-4861.2022.03.003

考虑连锁冲突的城市公交车行车风险量化分析方法

doi: 10.3963/j.jssn.1674-4861.2022.03.003
基金项目: 

国家重点研发计划项目 2018YFB1601100

详细信息
    通讯作者:

    李熙莹(1972—),博士,教授. 研究方向:视觉交通信息感知与认知、交通视频大数据技术等. E-mail: stslxy@mail.sysu.edu.cn

  • 中图分类号: U491.2

A Method for Quantitatively Analyzing Risks Associated with the Operation of Urban Buses Considering Chained Conflicts

  • 摘要: 为了量化城市公交车给区域混合交通带来的安全风险,通过提取交通冲突数据并识别连锁冲突,研究了公交车行车风险的量化分析方法。在数据采集上,采用了航拍图像并基于YOLOv4网络学习航拍目标的外观特征,检测并跟踪航拍车辆,从而提取带精细属性的车辆轨迹数据。在冲突识别上,将不同车道上可能发生横向碰撞的车辆对之间的相对位置作为约束条件,在跟驰模型的基础上补充了匹配相邻车道上车辆对的动态关系,从而将经典碰撞时间(TTC)模型扩展至可同时识别侧向冲突的二维TTC模型;基于车辆刺激-反应理论标定每个冲突车辆对区域交通造成连续干扰的时空范围,根据干扰范围的动态变化建立冲突间的作用关系并形成时序性的冲突树模型,从而识别连锁冲突并追溯连续风险形成的因果过程。在风险研究上,从3个方面量化不同状态下城市公交车的行车风险:①基于二维TTC模型解析冲突频率;②在此基础上结合累积频率法解析冲突严重性;③通过连锁冲突比例及冲突树长度解析冲突聚集的概率和范围大小。采集广州大桥路段航拍视频进行实验研究,结果表明:城市公交车在拥堵常发路段不仅冲突风险高,且带有较高的冲突严重性和区域聚集性;拥堵流中公交车的冲突频率超过9次(/ veh·min);公交车的严重冲突率为33.39%,远远高于小汽车的16.61%;公交车的区域连锁冲突发生率为30.75%,达到了小汽车(14.67%)的2倍。

     

  • 图  1  方法框架

    Figure  1.  Method framework

    图  2  横向车辆对关系建立条件

    Figure  2.  Conditions to establish lateral vehicle pairs

    图  3  不同方法的模型结构对比

    Figure  3.  Model structure comparison of different methods

    图  4  连锁冲突的刺激-反应过程

    Figure  4.  The stimulus-response process of chained conflict

    图  5  数据采集部分场景

    Figure  5.  Parts of data collection scenes

    图  6  连锁冲突识别示例

    Figure  6.  Examples of chained conflict identification

    图  7  连锁冲突中车辆的速度变化

    Figure  7.  Speed changes of vehicles in chained conflicts

    图  8  2类车辆的冲突频率累积频率图

    Figure  8.  Cumulative frequency diagrams of conflict frequency of the 2 types vehicle

    图  9  2类车辆的冲突TTC累积频率图

    Figure  9.  Cumulative frequency diagrams of conflict TTC of the 2 types vehicle

    图  10  冲突连锁效应比例结果

    Figure  10.  Results of the conflicts chain effect proportion

    图  11  平均冲突树长度分析结果

    Figure  11.  Results of average conflict tree length analysis

    表  1  车辆检测测试结果

    Table  1.   Test result of vehicle detection

    类别 真值/个 正检/个 误检/个 AP /% mAP /%
    car 32 284 32 147 445 99.25 90.82
    bus 1 590 1 345 86 82.39
    下载: 导出CSV

    表  2  车辆轨迹数据样例

    Table  2.   Examples of vehicle trajectory data

    时间/s 车辆ID x坐标/m y坐标/m 车长/m 车宽/m 车型 x轴速度/(m/s) y轴速度/(m/s) 车道 跟驰车辆ID
    1.5 2 52.77 54.03 12.96 3.13 bus 8.17 -0.33 5 66
    1.6 2 53.64 54.07 12.96 3.22 bus 10.11 0 5 75
    1.7 2 54.59 54.11 12.62 3.13 bus 11.09 0.65 5 75
    1.5 7 79.56 50.07 4.44 2.07 car 6.20 0.33 4 48
    1.6 7 80.04 50.11 4.52 2.08 car 6.20 0.65 4 48
    1.7 7 80.82 50.11 4.60 2.08 car 5.55 0.65 4 48
    下载: 导出CSV

    表  3  冲突数据属性含义

    Table  3.   Attributes meaning of conflict data

    属性 含义 属性 含义
    冲突ID 每个冲突的唯一标识 冲突前车ID 冲突中位置靠前的车辆ID
    TTC 冲突过程的最小TTC 冲突后车ID 冲突中位置靠后的车辆ID
    冲突时间 最小TTC出现冲突时间的时间 冲突前车类型 car或bus
    冲突类型 跟驰冲突或横冲突类型向冲突 冲突后车类型 car或bus
    下载: 导出CSV

    表  4  不同严重性等级的冲突统计结果

    Table  4.   Conflict statistics of different severity levels

    严重性等级 小汽车 公交车
    冲突次数 比例/% 冲突次数 比例/%
    严重冲突 24 597 16.61 2 993 33.39
    中度冲突 61 551 41.56 3 255 36.32
    轻微冲突 61 951 41.83 2 715 30.29
    下载: 导出CSV

    表  5  冲突严重性分析结果

    Table  5.   Analysis result of conflict severity

    平均速度/(km/h) 冲突等级 小汽车 公交车 折算公交车冲突比例/%
    冲突数/次 比率/% 冲突频率/[次/(辆.min)] 冲突数/次 比率/% 冲突频率/[次/(辆.min)]
    < 10 严重 5 660 21.89 0.96 646 40.71 2.63 10.24
    中度 10 406 40.24 1.76 514 32.39 2.09 4.71
    轻微 9 795 37.88 1.66 427 26.91 1.74 4.18
    共计 25 861 100.00 4.38 1 587 100.00 6.45 5.78
    > 10~20 严重 18 440 17.08 0.56 2 140 34.89 1.70 11.29
    中度 43 507 40.29 1.31 2 107 34.35 1.67 5.04
    轻微 46 043 42.64 1.39 1 887 30.76 1.50 4.30
    共计 107 990 100.00 3.26 6 137 100.00 4.88 5.86
    > 20~30 严重 703 13.92 0.20 69 25.84 0.51 9.79
    中度 2 125 42.07 0.59 113 42.32 0.83 5.53
    轻微 2 223 44.01 0.62 85 31.84 0.63 4.03
    共计 5 051 100.00 1.41 267 100.00 1.96 5.50
    > 30 严重 1 082 11.37 0.05 236 24.01 0.25 17.25
    中度 5 273 55.42 0.25 471 47.91 0.51 7.88
    轻微 3 160 33.21 0.15 276 28.08 0.30 7.72
    共计 9 515 100.00 0.45 983 100.00 1.06 9.00
    下载: 导出CSV

    表  6  不同方法量化聚集性交通风险的结果对比

    Table  6.   Comparison of the results from different methods to quantify gathered traffic risks

    方法 结果参数 时刻1 时刻2
    车辆群模型 聚集风险数 11 10
    群内车辆数 {12, 2, 2, 2, 3, 7, 2, 2, 3, 6, 2} {19, 2, 6, 2, 2, 6, 2, 2, 2, 2}
    行车风险度 {0.167, 0, 0.5, 0, 0, 0.286, 0, 0, 0, 0.333, 0} {0.316, 0, 0.167, 0, 0, 0.167, 0, 0, 0, 0.5}
    事故链模型 聚集风险数 3 2
    链内车辆数 {4, 5, 3} {6, 3}
    链内危险链数 {2, 3, 2} {3, 2}
    冲突树模型 聚集风险数 3 3
    树内车辆数 {4, 7, 3} {3, 9, 5}
    树内冲突数 {3, 7, 2} P, 11, 6}
    连锁冲突时刻/s {[0.4, 0.7, 1.6], [1.9, 3.2, 3.2, 3.2, 4.8, 4.9, 6.2], [0.2, 2.5]} {[10.2, 11.3], [10, 10.9, 11.9, 11.9, 11.9, 13.2, 13.9, 14.1, 14.6, 15.2, 15.8], [11.8, 13, 14.2, 14.9, 15.6, 17.1]}
    持续时长/s {1.2, 4.3, 2.3} {1.1, 4.8, 5.3}
    主因车辆 {car, bus, bus} {car, car, car}
    下载: 导出CSV

    表  7  连锁冲突识别结果

    Table  7.   Results of chained conflict recognition

    主因车辆 冲突树数量/个 直接冲突次数/次 连锁冲突数量/次 平均冲突树长度/次 连锁效应比例/%
    小汽车 9 159 12 792 16 304 3.18 14.67
    公交车 906 1 936 1 896 4.23 30.75
    下载: 导出CSV
  • [1] NGODUY D. Effect of the car-following combinations on the instability of heterogeneous traffic flow[J]. Transportmetrica B: Transport Dynamics, 2015, 3(1): 44-58. doi: 10.1080/21680566.2014.960503
    [2] 梁国华, 程国柱, 王春艳, 等. 高速公路大型车混入率与交通流稳定性关系[J]. 长安大学学报, 2014, 34(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201404020.htm

    LIANG G H, CHENG G Z, WANG C Y, et al. Relationship between mixing rate of freeway large vehicles and traffic flow stability[J]. Journal of Chang'an University, 2014, 34 (4): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201404020.htm
    [3] 赵笑月, 汪攀, 朱顺应, 等. 基于视频识别的互通合流区交通冲突空间分布[J]. 公路交通科技, 2021, 38(5): 90-99. doi: 10.3969/j.issn.1002-0268.2021.05.011

    ZHAO X Y, WANG P, ZHU S Y, et al. Spatial distribution of traffic conflicts in interchange merging area based on video recognition[J]. Journal of Highway and Transportation Research and Development, 2021, 38(5): 90-99. (in Chinese) doi: 10.3969/j.issn.1002-0268.2021.05.011
    [4] 陈峻, 王涛, 李春燕, 等. 城市公交车与社会车辆混合流速度模型及交通运行状态分析[J]. 中国公路学报, 2012, 25 (1): 128-140. doi: 10.3969/j.issn.1001-7372.2012.01.019

    CHEN J, WANG T, LI C Y, et al. Speed models of mixed traffic flow on bus-car and vehicle and analysis of traffic running state[J]. China Journal of Highway Transportation, 2012, 25 (1): 128-140. (in Chinese) doi: 10.3969/j.issn.1001-7372.2012.01.019
    [5] 盖靖元. 基于车速离散度的路段交通安全评估方法研究[D]. 南京: 东南大学, 2016.

    GAI J Y. A study on the assessment of road traffic safety based on speed dispersion[D]. Nanjing: Southeast University, 2016. (in Chinese)
    [6] GOH K C K. Exploring bus lane impacts using traffic micro-simulation[C]. Australasian Transport Research Forum, Brisbane, Australia: ATRF, 2013.
    [7] GOH K C K, CURRIE G, SARVI M, et al. Experimental microsimulation modeling of road safety impacts of bus priority[J]. Transportation Research Record, 2014(1): 9-18.
    [8] QI W W, RUAN L J, ZHI Y, et al. Risk area identification model of bus bay stops based on distribution of conflicts[J]. Discrete Dynamics in Nature and Society, 2021(25): 1-11.
    [9] BANSAL P, AGRAWAL R, TIWARI G. Impacts of bus-stops on the speed of motorized vehicles under heterogeneous traffic conditions: A study of Delhi, India[J]. International Journal of Transportation Science and Technology, 2014, 3(2): 167-178. doi: 10.1260/2046-0430.3.2.167
    [10] DIAH J M, HAMIDUN N Q A. The methodology review of traffic safety monitoring by using video recording for express bus in Malaysia[C]. 14th International Colloquium on Signal Processing and its Applications, Penang, Malaysia: IEEE, 2018.
    [11] 朱顺应, 蒋若曦, 王红, 等. 机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33(2): 15-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002002.htm

    ZHU S Y, JIANG R X, WANG H, et al. Review of research on traffic conflict technique[J]. China Journal of Highway Transportation, 2020, 33(2): 15-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002002.htm
    [12] 谢济铭, 秦雅琴, 彭博, 等. 多车道交织区车辆跟驰行为风险判别与冲突预测[J]. 交通运输系统工程与信息, 2021, 21 (3): 131-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103016.htm

    XIE J M, QIN Y Q, PENG B, et al. Risk discrimination and conflict prediction of vehicle-following behavior in multi-lane weaving sections[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (3): 131-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103016.htm
    [13] QI W W, WANG W, SHEN B, et al. A modified post encroachment time model of urban road merging area based on lane change characteristics[J]. IEEE Access, 2020 (8) 72835-72846.
    [14] 龙科军, 张燕, 邹志云, 等. 基于车辆轨迹的信号交叉口机非冲突判别[J]. 交通运输系统工程与信息, 2021, 21(1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202101012.htm

    LONG K J, ZHANG Y, ZOU Z Y, et al. Vehicle and non-motorized vehicle traffic conflict recognition at signalized intersection based on vehicle trajectory[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 69-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202101012.htm
    [15] XIONG X X, CHEN L, LIANG J. A new framework of vehicle collision prediction by combining SVM and HMM[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 699-710. doi: 10.1109/TITS.2017.2699191
    [16] 容颖, 温惠英, 赵胜. 高速公路单向双车道车辆群行车风险度量研究[J]. 重庆交通大学学报, 2019, 38(9): 95-100+121. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201909016.htm

    RONG Y, WEN H Y, ZHAO S. Study on driving risk measurement for two-lane freeway vehicle group[J]. Journal of Chongqing Jiaotong University, 2019, 38(9): 95-100+121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201909016.htm
    [17] 梁军, 张婉婉, 何美玲, 等. 车联网环境下道路交通事故链阻断效率评价方法研究[J]. 中国公路学报, 2018, 31(4): 211-224. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201804026.htm

    LIANG J, ZHANG W W, HE M L, et al. A blocking efficiency evaluation method for chains of road traffic incident in IOV environment[J]. China Journal of Highway Transportation, 2018, 31(4): 211-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201804026.htm
    [18] 杨澜, 马佳荣, 赵祥模, 等. 基于车路协同的高速公路车辆碰撞预警模型[J]. 公路交通科技, 2017, 34(9): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201709018.htm

    YANG L, MA J R, ZHAO X M, et al. A vehicle collision warning model in expressway scenario based on vehicle-infrastructure cooperation[J]. Journal of Highway and Transportation Research and Development, 2017, 34(9): 123-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201709018.htm
    [19] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-4-23)[2021-11-22]. https://arxiv.org/abs/2004.10934.
    [20] SUN Y M, CAO B, ZHU P F, et al. Drone-based RGB-infrared cross-modality vehicle detection via uncertainty-aware learning[EB/OL]. (2021-10-14)[2021-11-22]. https://arxiv.org/abs/2003.02437.
    [21] EVERINGHAM M, GOOL V L, WILLIAMS C K I, et al. The pascal visual object classes(VOC)challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
    [22] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[EB/OL]. (2017-3-21)[2021-11-22]. https://arxiv.org/abs/1703.07402.
    [23] AUTEYJ, SAYEDT, ZAKIMH. Safety evaluation ofright-turn smart channels using automated traffic conflict analysis[J]. Accident Analysis & Prevention, 2012, 45(2): 120-130.
    [24] 马艳丽, 祁首铭, 吴昊天, 等. 基于PET算法的匝道合流区交通冲突识别模型[J]. 交通运输系统工程与信息, 2018, 18 (2): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201802022.htm

    MA Y L, QI S M, WU H T, et al. Traffic conflict identification model based on post encroachment time algorithm in ramp merging area[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2): 142-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201802022.htm
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  1034
  • HTML全文浏览量:  438
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11
  • 网络出版日期:  2022-07-25

目录

    /

    返回文章
    返回