A Method for Detecting and Differentiating Asphalt Pavement Distress Based on an Improved SegNet Algorithm
-
摘要: 针对现有SegNet算法难以精确区分裂缝和灌封裂缝等具有相似特征的沥青路面病害的问题,提出了基于改进SegNet网络的沥青路面病害提取方法。针对道路标线和光照不均匀等导致路面病害图像质量差异化的因素,本研究在去除道路标线的基础上,运用带色彩恢复的多尺度视网膜增强算法,降低道路标线和光照对图像质量的影响以及增强路面病害图像的对比度、色调和亮度,提高病害的识别精度;为了充分利用图像的上下文信息,解决SegNet网络对细微病害分割效果不佳的问题,引入残差神经网络(ResNet)作为编码器,并对解码器中每个上采样产生的特征图拼接2个分别由卷积层(1×1的卷积核)和空洞卷积层从对应的编码器中获取的尺度相同的特征图;运用形态学闭运算连接分割结果中不连续的裂缝。为了验证改进算法的有效性,将其与典型的语义分割方法(SegNet和BiSeNet)在测试集上进行测试和性能对比。研究结果表明,3种方法的平均交并比(MIoU)和F1分数(F1-score)分别为(82.4%,98.9%),(69.4%,94.0%),(80.5%,98.1%);利用这3种方法对甘肃省部分路段路面病害的提取效果进行对比测试,提出方法的裂缝漏检率和误检率分别为2.91%,1.94%,优于SegNet(10.68%,14.56%)和BiSeNet(6.80%,12.62%)。本研究所提方法能够更精确地提取和区分沥青路面裂缝和灌封裂缝。Abstract: The existing SegNet methods are unable to accurately differentiate asphalt pavement distress with similar characteristics, such as cracks and sealed cracks. To solve this problem, a method of detecting asphalt pavement distress based on an improved SegNet network is proposed. In order to remove the negative impact of road markings and uneven illumination onto image quality of road surface and subsequent failure detection, a multi-scale Retinex algorithm with color restoration(MSRCR)is used to reduce the impact of road marking and uneven lighting on image quality. Through enhancing the contrast, hue and brightness of the images for road surface, the accuracy of distress recognition is improved. In order to fully use of the contextual information of the image, and overcome the issue with the SegNet network of being ineffective in segmenting and identifying subtle diseases, a residual neural network(ResNet)is introduced as the encoder, and two feature maps with a same scale obtained by a convolutional layer with a 1×1 kernel and a dilated convolutional layer with different dilation rates are fused for each feature map, generated by up-sampling in the decoder. And a closed, morphological operation is used to connect discontinuous cracks. To verify the effectiveness of the improved algorithm, it is compared with the classic semantic segmentation methods(such as SegNet and BiSeNet)over the test sets. The average intersection over Union(MIoU)and F1 score are(82.4%, 98.9%), (69.4%, 94.0%)and(80.5%, 98.1%), respectively. The three methods are compared in terms of their extraction efficiency in identifying pavement diseases using the pavement images collected at several freeway sections in the Gansu Province. The misdetection rate and false detection rate of cracks of the proposed method are 2.91%, 1.94%, respectively, which are much better than those of the SegNet(10.68%, 14.56%)and BiSeNet(6.80%, 12.62%). The above results show that the proposed method can be used to extract and identify asphalt pavement cracks and sealed cracks with a higher accuracy.
-
表 1 数据集构成
Table 1. Dataset composition
数据 横、纵向裂缝 灌封裂缝 总数 训练 2 970 1 485 4 455 测试 990 495 1 485 总数 3 960 1 980 5 940 表 2 对比3种方法的平均测试结果
Table 2. Comparision the average testing results of three metholds
方法 Precision Recall F1 score MIoU 裂缝精度 灌封裂缝精度 SegNet 0.951 016 2 0.949 304 7 0.940 000 5 0.694 327 7 0.614 384 1 0.867 085 1 BiSeNet 0.990 421 0.990 492 5 0.980 700 8 0.804 804 0.844 634 7 0.958 933 改进方法 0.990 865 9 0.991 129 2 0.989 067 2 0.823 605 0.876 625 9 0.969 096 6 表 3 3种方法的漏检率和误检率
Table 3. The missed detection rate and false detection rate of the three methods
病害类别 手动提取/条 SegNet BiSeNet 本文方法 漏检率/% 误检率/% 漏检率/% 误检率/% 漏检率/% 误检率/% 灌封裂缝 164 9.15 3.05 7.93 3.05 0.60 0.00 裂缝 103 10.68 14.56 6.80 12.62 2.91 1.94 -
[1] 马建, 赵祥模, 贺拴海, 等. 路面检测技术综述[J]. 交通运输工程学报, 2017, 17(5): 121-137. doi: 10.3969/j.issn.1671-1637.2017.05.012MA J, ZHAO X M, HE S H, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.05.012 [2] ZOU Q, CAO Y, LI Q, et al. CrackTree: Automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238. doi: 10.1016/j.patrec.2011.11.004 [3] KIRSCHKE K R, VELINSKY S A. Histogram-based approach for automated pavement crack sensing[J]. Transportation Engineering, 1992, 118(5): 700-710. doi: 10.1061/(ASCE)0733-947X(1992)118:5(700) [4] 李清泉, 邹勤, 毛庆洲. 基于最小代价路径搜索的路面裂缝检测[J]. 中国公路学报, 2010, 23(6): 28-33. doi: 10.3969/j.issn.1001-7372.2010.06.005LI Q Q, ZOU Q, MAO Q Z. Pavement crack detection based on minimum cost path searching[J]. China Journal of Highway and Transport, 2010, 23(6): 28-33. (in Chinese) doi: 10.3969/j.issn.1001-7372.2010.06.005 [5] ABDEL-QADER I, ABUDAYYEH O, KELLY M E. Analysis of edge-detection techniques for crack identification in bridges[J]. Journal of Computing in Civil Engineering, 2003, 17 (4): 255-263. doi: 10.1061/(ASCE)0887-3801(2003)17:4(255) [6] KAMALIARDAKANI M, SUN L, ARDAKANI M K. Sealed crack detection algorithm using heuristic thresholding approach[J]. Journal of Computing in Civil Engineering, 2016, 30(1): 04014110. doi: 10.1061/(ASCE)CP.1943-5487.0000447 [7] HU Y, ZHAO C X. A local binary pattern-based method for pavement crack detection[J]. Pattern Recognit, 2010, 5(1): 140-147. doi: 10.13176/11.167 [8] ZALAMA E, GOMEZ-GARCIA-BERMEJO J, MEDINA R. et al. Road crack detection using visual features extracted by Gabor filters[J]Computer-Aided Civil and Infrastructure Engineering, 2014, 29(5): 342-358. doi: 10.1111/mice.12042 [9] SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forest[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12), 3434-3445. doi: 10.1109/TITS.2016.2552248 [10] NEJAD F M, ZAKERI H. A comparison of multiresolution methods for detection and isolation of pavement distress[J]. Expert Systems with Applications, 2011, 38(3): 2857-2872. doi: 10.1016/j.eswa.2010.08.079 [11] CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-37. doi: 10.1111/mice.12263 [12] DORAFSHAN S, THOMAS R J, MAGUIRE M. Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete[J]. Construction and Building Materials, 2018(186): 1031-1045. [13] 沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. doi: 10.3969/j.issn.1001-7372.2018.01.001SHA A M, TONG Z, GAO J. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transportation, 2018, 31(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.01.001 [14] ZHANG L, YANG F, ZHANG Y D. et al. Road crack detection using deep convolutional neural network[C]. IEEE International Conference on Image Processing, Phoenix: IEEE, 2016. [15] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. doi: 10.1109/TPAMI.2016.2572683 [16] 景庄伟, 管海燕, 彭代峰, 等. 基于深度神经网络的图像语义分割研究综述[J]. 计算机工程, 2020, 46(10): 1-17. doi: 10.3778/j.issn.1002-8331.2001-0320JING Z W, GUAN H Y, PENG D F, et al. Survey of research in image semantic segmentation based on deep neural network[J]. Computer Engineering, 2020, 46(10): 1-17. (in Chinese) doi: 10.3778/j.issn.1002-8331.2001-0320 [17] HUANG H W, LI Q T, ZHANG D M. Deep learning-based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018(77): 166-176. [18] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. The European Conference on Computer Vision, Cham: Springer, 2018. [19] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. doi: 10.1109/TPAMI.2016.2644615 [20] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. International Conference on Medical image computing and computer-assisted intervention, Cham: Springer, 2015. [21] YU C Q, WANG J, PENG C. BiSeNet: Bilateral segmentation network for real-time semantic segmentation[C]. 15th European Conference in Computer Science, Cham: Springer, 2018. [22] BANG S, PARK S, KIM H, et al. Encoder-decoder network for pixel-level road crack detection in black-box images[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(8): 713-727. doi: 10.1111/mice.12440 [23] XUE L L, LIANG K D, LI W, et al. FPGA accelerates deep residual learning for image recognition[C]. IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference, Chengdu: IEEE, 2017. [24] ZEILER M D, FERGUS R. Visualizing and understandingconvolutional networks[C]. European Conference on Computer Vision, Cham, Switzerland: Springer, 2014. [25] WANG Y K, HUANG W B. A CUDA-enabled parallel algorithm for accelerating retinex[J]. Journal of Real-Time Image Processing, 2014, 9(3): 407-425. doi: 10.1007/s11554-012-0301-6 [26] 侯越, 陈逸涵, 顾兴宇, 等. 基于卷积自编码的沥青路面目标与裂缝智能识别[J]. 中国公路学报, 2020, 206(10): 292-307. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202010023.htmHOU Y, CHEN Y H, GU X Y, et al. Automatic identification of pavement objects and cracks using the convolutional auto-encoder[J]. China Journal of Highway and Transport, 2020, 206(10): 292-307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202010023.htm [27] RIZZI A, GATTA C, MARINI D. A new algorithm for unsupervised global and local color correction[J]. Pattern Recognition Letters, 2003, 24(11): 1663-1677. doi: 10.1016/S0167-8655(02)00323-9 [28] 王鹏, 神和龙, 尹勇, 等. 基于深度学习的船舶驾驶员疲劳检测算法[J]. 交通信息与安全, 2022, 40(1): 1-9. doi: 10.3963/j.jssn.1674-4861.2022.01.008WANG P, SHEN H L, YIN Y, et al. A detection algorithm for the fatigue of ship ffficers based on deep learning technique[J]. Journal of Transport Information and Safety, 2022, 40(1): 1-9. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.01.008 [29] KASTHURIRANGAN G, SIDDHARTHA K K, ALOK C, et al. Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection[J]. Construction and Building Materials, 2017 (157): 322-330. [30] MANDAL V, UONG L, ADU G Y. Automated road crack detection using deep convolutional neural networks[C]. IEEE International Conference on Big Data, Seattle: IEEE, 2018. [31] HANG K, CHENG H D, ZHANG B. Unified approach to pavement crack and sealed crack detection using pre-classification based on transfer learning[J]. Journal of Computing in Civil Engineering, 2018, 32(2): 04018001/1-12. doi: 10.1061/(ASCE)CP.1943-5487.0000736 [32] CHEN T Y, CAI Z H, ZHAO X. et al. Pavement crack detection and recognition using the architecture of segNet[J]. Journal of Industrial Information Integration, 2020, 18(2): 1-12. [33] 徐辉, 祝玉华, 甄彤, 等. 深度神经网络图像语义分割方法综述[J]. 计算机科学与探索, 2021, 15(1): 47-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202101003.htmXU H, ZHU Y H, ZHEN T, et al. Survey of image semantic segmentation methods based on deep neural network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 47-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202101003.htm