The Effect of the Terrain Slope of Mountainous City on Car Ownership: A Case Study of the City of Guiyang
-
摘要: 为分析山地城市建成环境对居民小汽车拥有的影响,探究不同坡度下居民地形感知对小汽车拥有影响的差异,采用贵阳市中心城区不同坡度下的小区居民调研数据,引入3个观测变量来评价居民的地形感知,将结构方程模型(SEM)计算出的潜变量适配值融入Logit模型中,构建包含潜变量和显变量的SEM-Logit模型来研究主客观建成环境与小汽车拥有的关系。结果表明:坡度对小汽车拥有产生积极影响,但不同坡度下的地形感知对小汽车拥有的影响有所不同。在地形条件相对较好的环境中,当小区坡度小于8%,居民对地形感知并不强烈,并认为从小区步行到公共交通站点的距离和时间花费在其承受范围内。因此,地形感知并未对小汽车拥有造成显著影响;在小区坡度为8%~15%时,地形感知对小汽车拥有产生显著负效应。生活在该小区类型的居民,尤其是收入相对偏低的居民,更喜欢选择电动自行车出行,削弱了小汽车拥有量;当小区坡度大于15%时,小区坡度与小汽车拥有量具有正相关性。该小区类型的道路坡度大,居民出行过程中通常会经历频繁的上下坡,造成出行时间花费长,继而形成强烈的地形感知。这严重降低了居民出行选择步行或骑行的可能性,转而提升了小汽车拥有的概率。同时,在SEM-Logit模型中也证明了除地形因素外,家庭年收入、到地铁站最近距离、土地利用混合度、目的地可达性、出行态度对小汽车拥有具有较大影响。Abstract: To analyze the effect of the terrain slope of mountain cities on car ownership of residents, and to study the effect of perception of residential environment on car ownership under different terrain slopes, three observed variables are introduced to evaluate the effect based on the survey data collected from residential areas with different slopes in the downtown area of the City of Guiyang. In this regard, SEM-Logit models with latent and explicit variables are developed to study the effect of perceived and objective built environment on car ownership by incorporating adaptation values of latent variables into logit models. Study results show that the perception of terrain has an effect on the car ownership. Under the scenarios where the terrain slope of the neighborhood is less than 8%, the distance and time cost of walking to public transportation stations in the neighborhood is considered to be within their tolerance and the perception of terrain does not significantly affect car ownership. When the slope is between 8% and 15%, the perception of terrain has a significant negative effect on car ownership. Residents in these areas, especially those with a low income, prefer to travel by electric bicycles, which is found to significantly reduce the car ownership. When the slope is greater than 15%, there is a positive correlation between terrain slope and car ownership. Frequent uphill and downhill roads cost residents a higher travel time in these areas. This severely reduces the likelihood that residents choose walking or cycling, which in turn increases the probability of car ownership. Moreover, it is found that annual household income, closest distance to subway station, mixed land-use, accessibility of destination, and travel attitude all have a significant impact on the car ownership.
-
Key words:
- traffic engineering /
- mountainous city /
- car ownership /
- structural equation model
-
表 1 调研片区信息表
Table 1. Information of investigated area
编号 调查片区名称 坡度/%(等级) 道路非直线系数(等级) 1 月亮岩 19.20(5) 1.45(3) 2 保利春天 10.94(3) 1.93(5) 3 相宝新村 11.32(3) 1.65(4) 4 中天.未来方舟 17.70(5) 1.63(4) 5 中坝 1.21(1) 1.10(1) 6 溪山御景 4.72(2) 1.26(2) 7 梅兰山 5.63(2) 1.32(2) 8 贵州民族大学 15.67(4) 1.81(5) 表 2 个人及家庭属性变量描述性统计
Table 2. Descriptive statistics of individual and household attribute variables
变量 变量说明 最大值 最小值 均值 性别 男为1,女为2 2 1 1.53 年龄/岁 ≤18为1,>18~30为2,>30~40为3,>40~50为4,>50~60为5,>60岁为6 6 1 3.17 受教育程度 小学及以下为1,初中为2,高中/职中/中专为3,大专为4,本科为5,本科以上为6 6 1 3.46 步行到公交站距离/m ≤200为1,>200~400为2,>400~600为3,>600~800为4,>800~1 000为5,>1 000为6 6 1 3.89 家庭年收入/元 ≤50 000为1,>50 000~100 000为2,>100 000~150 000为3,>150 000为4 4 1 2.43 有无驾照 有为1,无为0 1 0 0.54 房屋性质 自有住宅为1,租房为2,单位住房为3,其他为4 4 1 1.29 家庭规模/人 家庭成员数量 8 1 4.23 家庭中儿童规模/人 家庭中小于12岁的人数 4 0 0.58 家庭中老年人规模/人 家庭中大于60岁的人数 4 0 0.48 小汽车拥有 家庭中有小汽车为1,无为0 1 0 0.75 电动自行车数量/辆 家庭中拥有电动自行车数量 3 0 0.36 摩托车数量/辆 家庭中拥有摩托车数量 2 0 0.14 表 3 主观建成环境变量描述性统计
Table 3. Descriptive statistics of subjective built environment variables
潜变量 观测变量 最大值 最小值 均值 吸引力 小区的公共设施很完善 5 1 3.06 小区的环境很优美 5 1 3.18 小区的邻里关系非常好 5 1 3.16 活动支持 我觉得小区附近的人行道很完善 5 1 3.14 我觉得小区周围搭乘公交车很便捷 5 1 2.98 地形感知 我觉得小区的道路坡度大 5 1 3.15 小区到公交站点的道路坡度对我出行的影响很大 5 1 2.57 道路坡度对我步行舒适性影响很大 5 1 2.63 出行态度 我认为开车可以节约更多的时间 5 1 3.07 我认为开车比坐公交方便 5 1 3.46 我喜欢开车 5 1 3.15 目的地可达性 小区到商店很便利 5 1 3.21 小区到公园很便利 5 1 3.15 小区到医院/学校的很便利 5 1 3.19 表 4 客观建成环境变量描述性统计
Table 4. Descriptive statistics of objective built environment variables
变量 描述 均值 居住密度/(万人/ km2) 居住小区所在街道的人口密度 1.05 公交站点数量/个 缓冲区内公交站点的数量 13.63 到城市中心距离/km 小区到城市中心距离 8.21 到地铁站距离/ km 小区到最近地铁站距离 4.86 土地利用混合度 根据熵指数法计算11种POI数据的混合度 0.74 路网密度/(km/km2) 缓冲区内公路路网密度 3.78 小区坡度/% 小区实际坡度 10.79 表 5 模型适配度
Table 5. Model fit
模型适配值 评价指标 CMIN/DF GFI RMSEA AGFI CFI 参考值 1~3 >0.9 <0.08 >0.9 >0.9 实际值 2.708 0.978 0.037 0.968 0.985 表 6 结构方程模型路径系数及估计值
Table 6. Structural equation model path coefficients and estimates
路径 Estimate S.E. C.R. p 目的地可达性→小汽车拥有 -0.053 0.025 -2.103 ** 吸引力→小汽车拥有 0.127 0.016 7.963 *** 活动支持→小汽车拥有 -0.116 0.023 -5.097 *** 地形感知→小汽车拥有 0.042 0.016 2.627 ** 出行态度→小汽车拥有 0.093 0.017 5.327 *** 注:***表示p<0.01;**表示p<0.05。 表 7 描述性统计
Table 7. Descriptive Statistics
变量 变量说明 坡度1 坡度2 坡度3 坡度4 均值 标准差 均值 标准差 均值 标准差 均值 标准差 性别 男为1,女为2 1.50 0.50 1.49 0.52 1.56 0.49 1.57 0.49 年龄/岁 ≤18为1,>18~30为2,>30~40为3,>40~50为4,>50~60为5,>60为6 3.04 1.42 3.10 1.44 3.28 1.49 3.35 1.45 受教育程度 小学及以下为1,初中为2,高中/职中/中专为3,大专为4,本科为5,本科以上为6 3.84 1.43 3.45 1.46 3.21 1.36 3.02 1.34 家庭年收入/元 ≤50 000为1,>50 000~100 000为2,>100 000~150 000为3,>150 000为4 2.75 1.22 2.46 1.12 2.36 1.07 2.31 1.09 有无驾照 有为1,无为2 1.42 0.49 1.55 0.49 1.63 0.48 1.63 0.48 房屋性质 自有住宅为1,租房为2,单位住房为3,其他为4 1.13 0.37 1.27 0.45 1.49 0.61 1.53 0.61 家庭规模/人 家庭成员数量 4.45 1.41 4.21 1.61 3.67 1.64 3.87 1.94 家中儿童规模/人 家中小于12岁的人数 0.67 0.66 0.74 0.69 0.49 0.62 0.83 0.75 家中老年人规模/人 家中大于60岁的人数 0.45 0.71 0.45 0.69 0.46 0.67 0.51 0.68 小汽车拥有 家中有小汽车为1,无为0 0.81 0.39 0.68 0.47 0.49 0.49 0.62 0.49 电动自行车数量/辆 家中拥有电动自行车数量 0.37 0.54 0.33 0.51 0.31 0.49 0.34 0.47 摩托车数量/辆 家中拥有摩托车数量 0.11 0.31 0.26 0.49 0.11 0.32 0.27 0.49 表 8 模型结果
Table 8. Model results
类型 变量 总体模型 模型1/(等级1) 模型2/(等级2) 模型3/(等级3) 模型4/(等级4) Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E. 个人属性 性别(男) 0.119 0.163 0.786* 0.473 0.037 0.388 -0.107 0.343 1.247 0.588 年龄 0.076 0.056 -0.212 0.196 0.128 0.132 0.093 0.125 0.087** 0.186 家庭属性 房屋性质(自住) -0.897 0.155 -1.591 0.597 -2.67*** 0.442 0.174 0.313 0.548 0.543 家庭规模 0.640*** 0.072 0.654*** 0.219 0.577*** 0.213 0.820*** 0.154 1.056*** 0.236 家中儿童规模 0.711*** 0.140 0.710 0.442 0.699** 0.342 0.632* 0.330 1.270*** 0.464 家中老年人规模 -0.716** 0.147 1.267** 0.617 -0.384 0.772 -0.773** 0.332 -2.795*** 0.617 摩托车数量 -0.356** 0.159 0.805 0.893 -1.161*** 0.428 -0.511 0.393 0.374 0.442 电动车数量 0.564*** 0.205 -0.605 0.453 -1.041*** 0.377 -1.204** 0.556 0.863 0.532 家庭年收入 0.459*** 0.078 0.426** 0.194 0.588*** 0.224 0.836*** 0.170 0.651** 0.256 主观建成环境 目的地可达性 -0.413*** 0.098 0.231 0.333 -0.421 0.264 0.003 0.218 -0.774*** 0.256 吸引力 0.361*** 0.131 0.663* 0.351 0.606* 0.332 0.244 0.327 -0.448 0.417 活动支持 0.008 0.111 -0.687* 0.321 -0.527* 0.363 0.071 0.245 0.046 0.327 地形感知 0.105 0.078 -0.301 0.210 0.255 0.177 -0.559** 0.202 0.913*** 0.321 出行态度 0.650*** 0.082 0.403* 0.241 0.509** 0.217 0.725*** 0.183 0.975*** 0.258 客观建成环境 步行到公交站距离/m >200~400 0.274 0.231 0.088 0.503 0.299 0.452 0.234 0.612 -0.420 0.958 >400~600 0.134 0.255 0.679 0.765 0.232 0.556 -0.857* 0.498 0.188 0.982 >600~800 -0.282 0.246 0.282 0.873 -1.67 0.702 -1.819** 0.481 1.904** 0.827 >800~1 000 1.27*** 0.281 -0.076 0.912 0.918 0.658 -0.072 0.602 2.495*** 0.811 >1 000 0.201 0.343 0.832 1.241 -1.59 1.09 0.613 0.737 1.042 0.913 公交站点数量 -0.275** 0.132 到城市中心距离 0.081 0.059 到最近地铁站距离 -0.300*** 0.120 土地利用混合度 -1.261** 0.591 人口密度 -0.070 0.111 小区坡度 0.110* 0.064 路网密度 0.808 0.620 注:***、**和*分别表示p<0.01、p<0.05和p<0.1。 -
[1] 丁川, 林姚宇, 王耀武. 城市空间扩张与机动化水平增长之间的互动关系探析[J]. 交通运输系统工程与信息, 2014, 14(3): 9-15. doi: 10.3969/j.issn.1009-6744.2014.03.002DING C, LIN Y Y, WANG Y W. Interactiverelationship between urban spatial expansionand mobility growth in China[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(3): 9-15. (in Chinese) doi: 10.3969/j.issn.1009-6744.2014.03.002 [2] 杨文越, 梁斐雯, 曹小曙. 多尺度建成环境对居民通勤出行碳排放的影响: 来自广州的实证研究[J]. 地理研究, 2020, 39(7): 1625-1639. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202007013.htmYANG W Y, LIANG F W, CAO X S. Examining the effects of the multi-scale builtenvironment on residents'CO2 emissions from commuting: An empirical study of Guangzhou[J]. Geographical Research, 2020, 39(7): 1625-1639. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202007013.htm [3] 徐家红, 周继彪, 马昌喜, 等. 基于二元有序概率的共享单车满意度评估方法[J]. 交通信息与安全, 2021, 39(3): 136-141+151. doi: 10.3963/j.jssn.1674-4861.2021.03.017XU J H, ZHOU J B, MA C X, et al. An evaluation method for bicycle sharing satisfaction based on a bivariate ordered probit model[J]. Journal of Transport Information and Safety, 2021, 39(3): 136-141+151. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.03.017 [4] 王晓全. 职住地建成环境影响下居民小汽车依赖行为分析与建模[D]. 北京: 北京交通大学, 2021.WANG X Q. Analysis and modelling of residents'car dependence under the impacts of residential and workplace built environment[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese) [5] 段梅花, 赵航, 龙立美, 等. 山地城市公交系统服务在老年人群体中分配公平性评价[J]. 地球信息科学学报, 2021, 23(4): 617-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202104008.htmDUAN M H, ZHAO H, LONG L M, et al. The evaluation of allocation fairness tourban transit system service to elderly inmountainous city[J]. Journal of Geo Information Science, 2021, 23(4): 617-631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202104008.htm [6] 蔡明, 蔡晓禹, 张梦歌, 等. 山地城市轨道车站周边住宅区居民出行研究[J]. 交通科技与经济, 2016, 18(3): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJJ201603002.htmCAI M, CAI X Y, ZHANG M G, et al. Research on trip characteristics of residential communities near by urban rail stations in mountain city[J]. Technology Economy in Areas of Communications, 2016, 18(3): 4-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJJJ201603002.htm [7] 董慰, 刘岩, 董禹. 健康视角下城市居民对建成环境感知的测度方法研究进展[J]. 科技导报, 2020, 38(7): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202007010.htmDONG W, LIU Y, DONG Y. Measurement methods of urban residents'perception of built environment from a health perspective: A review[J]. Science & Technology Review, 2020, 38(7): 61-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202007010.htm [8] TAO S, HE S Y, THOGERSEN J, et al. The role of car ownership in attitudes towards public transport: A comparative study of Guangzhou and Brisbane[J]. Transportation Research Part F: Psychology and Behaviour, 2019, (60): 685-699. [9] VERMA M, ASHISH M, MANOJ A, et al. Analysis of the influences of attitudinal factors on car ownership decisions, among urban young adults in a developing country like India[J]. Transportation Research Part F: Psychology and Behaviour, 2016(42): 90-103. [10] 丁川. 考虑空间异质性的城市建成环境对交通出行的影响研究[D]. 深圳: 哈尔滨工业大学, 2014.DING C. Research on impacts of urban built environment on travel accounting for spatial heterogeneity[D]. Shenzhen: Harbin Institute of Technology, 2014. (in Chinese) [11] HE S Y, THOGERSEN J. The impact of attitudes and perceptions on travel mode choiceand car ownership in a Chinese megacity: The case of Guangzhou[J]. Research in Transportation Economics, 2017(62): 57-67. [12] 王晓全, 邵春福, 尹超英, 等. 考虑交通小区相关性的小汽车拥有行为研究[J]. 交通运输系统工程与信息, 2019, 19(4): 28-32+71. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201904005.htmWANG X Q, SHAO C F, YIN C Y, et al. Capturing car ownership behavior considering spatial auto correlation in traffic analysis zones[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 28-32+71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201904005.htm [13] 尹超英, 邵春福, 黄兆国, 等. 基于梯度提升决策树的多尺度建成环境对小汽车拥有的影响[J]. 吉林大学学报(工学版), 2022, 52(3): 572-577. doi: 10.13229/j.cnki.jdxbgxb20200844YIN C Y, SHAO C F, HUANG Z G, et al. Investigating the influences of multi-scale built environment on car ownership behavior based on gradient boosting decision trees[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 572-577. (in Chinese) doi: 10.13229/j.cnki.jdxbgxb20200844 [14] 王晓全, 邵春福, 管岭, 等. 基于机器学习模型的建成环境对小汽车拥有行为的影响[J]. 交通运输系统工程与信息, 2020, 20(4): 173-177. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004025.htmWANG X Q, SHAO C F, GUAN L, et al. Exploring influences of built environment on car ownership based on a machine learningmethod[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 173-177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004025.htm [15] DING C, WANG Y, XIE B, et al. Understanding the role of built environment in reducing vehicle miles traveled accounting for spatial heterogeneity[J]. Sustainability, 2014(6): 589-601. [16] DING C, LIN Y, LIU C. Exploring the influence of built environment on tour-based commuter mode choice: A cross-classified multil evel modeling approach[J]. Transportation Research Part D: Transport & Environment, 2014(32): 230-238. [17] JIANG Y, GU P, CHEN Y, et al. Influence of land use and street characteristics on car ownership and use: Evidence from Jinan, China[J]. Transportation Research Part D: Transport and Environment, 2017, (52): 518-534. [18] ADITJANDRA P T, CAO X, MULLEY C. Understanding neighbourhood design impact on travel behaviour: An application of structural equations model to a British metropolitan data[J]. Transportation Research Part A: Policy and Practice, 2012, 46(1): 22-32. doi: 10.1016/j.tra.2011.09.001 [19] ACKER V V, WITLOX F. Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship[J]. Journal of Transport Geography, 2010, 18(1): 65-74. doi: 10.1016/j.jtrangeo.2009.05.006 [20] CAO X J, NAESS P, WOLDAY F. Examining the effects of the built environment onauto ownership in two Norwegian urban regions[J]. Transportation Research Part D: Transport and Environment, 2019(67): 464-474. [21] YI Z, YUAN L, YANG X, et al. Built environment and household electric bike ownership: Insights from Zhongshan metropolitan area, China[J]. Transportation Research Record Journal of the Transportation Research Board, 2013, 2387(1): 102-111. doi: 10.3141/2387-12 [22] AO Y, CHEN C, YANG D, et al. Relationship between rural built environment and household vehicle ownership: An empirical analysis in rural Sichuan, China[J]. Sustainability, 2018, 10(5): 1566-1583. doi: 10.3390/su10051566 [23] YIN C, SHAO C, WANG X. Built environment and parking availability: Impacts on car ownership and use[J]. Sustainability, 2018, 10(7): 2285-2299. [24] SOLTAN A. Social and urban form determinants of vehicle ownership; evidence from adeveloping country[J]. Transportation Research Part A: Policy and Practice, 2017(96): 90-100. [25] KUHNIMHOF T, YAMAMOTO T. Men shapea downward trend in car use among youngadults: Evidence from six industrialized countries[J]. Transport Reviews, 2012, 32(6): 761-779. [26] FIAMM B. The impacts of environmental knowledge and attitudes on vehicle ownership and use[J]. Transportation Research Part D: Transport and Environment, 2009, 14(4): 272-279. [27] 刘洛廷. 基于SEM-Logit的城际旅客出行公共交通模式选择意向研究[D]. 西安: 长安大学, 2019.LIU L T. Study on the choice intention of public transportation mode of intercity passengers'travel based on SEM-Logit[D]. Xi'an: Chang'an University, 2019. (in Chinese) [28] 陈坚, 晏启鹏, 杨飞, 等. 出行方式选择行为的SEM-Logit整合模型[J]. 华南理工大学学报(自然科学版), 2013, 41(2): 51-57, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201302010.htmCHEN J, YAN Q P, YANG F, et al. SEM-Logit integration model of travel mode choice behaviors[J]. Journal of South China University of Technology(Natural Science Edition), 2013, 41(2): 51-57, 65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201302010.htm [29] 朱秋宇, 塔娜. 职住建成环境对郊区居民通勤方式的影响: 以上海市为例[J]. 世界地理研究, 2021, 30(2): 433-442. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDJ202102020.htmZHU Q Y, TA N. The impact of built environment in neighborhood and workplace on suburban residents'commuting mode: A case study in Shanghai[J]. World Regional Studies, 2021, 30(2): 433-442. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDJ202102020.htm [30] 叶玉玲, 韩明初, 陈俊晶. 基于出行链的城际旅客出行方式选择行为[J]. 同济大学学报(自然科学版), 2018, 46(9): 1234-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201809011.htmYE Y L, HAN M C, CHEN J J. Intercity passenger travel mode choice behavior basedon trip chain[J]. Journal of Tongji University(Natural Science), 2018, 46(9): 1234-1240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201809011.htm [31] 胡骥, 姚鸣, 刘艳, 等. 基于SEM-MNL模型的运输通道出行方式选择行为研究[J]. 铁道工程学报, 2017, 34(4): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201704016.htmHU J, YAO M, LIU Y, et al. Research on thetravel choice behaviors of transportation corridor based on SEM-MNL model[J]. Journalof Railway Engineering Society, 2017, 34(4): 80-85(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201704016.htm [32] 余静财, 李文权, 王顺超, 等. 共享电动汽车选择行为分析[J]. 东南大学学报(自然科学版), 2021, 51(1): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202101021.htmYU J C, LI W Q, WANG S C, et al. Analysis of the selection behavior of shared electric vehicles[J]. Journal of Southeast University(Natural Science Edition), 2021, 51(1): 153-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202101021.htm [33] 吴明隆. 结构方程模型: AMOS的操作与应用[M]. 重庆: 重庆大学出版社, 2010.WU M L. Structural equation model: Operation and application of AMOS[M]. Chongqing: Chongqing University Press, 2010. (in Chinese) [34] 黄晓燕, 曹小曙, 殷江滨, 等. 城市轨道交通和建成环境对居民步行行为的影响[J]. 地理学报, 2020, 75(6): 1256-1271. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202006013.htmHUANG X Y, CAO X S, YIN J B, et al. The influence of urban transit and built environment on walking[J]. Acta Geographica Sinica, 2020, 75(6): 1256-1271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202006013.htm [35] 范琪, 王炜, 杨洋, 等. 家庭收入差异对出行方式选择的影响分析[J]. 交通信息与安全, 2019, 37(6): 111-120. doi: 10.3963/j.issn.1674-4861.2019.06.014FAN Q, WANG W, YANG Y, et al. Effects ofhousehold income differences on travel mode choice[J]. Journal of Transport Information and Safety, 2019, 37(6): 111-120. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.06.014 [36] 熊桂开, 朱丽丽, 薛梅. GIS-BIM技术在山地城市路网优化设计中的应用[J]. 重庆交通大学学报(自然科学版), 2017, 36(4): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201704016.htmXIONG G K, ZHU L L, XUE M. Application of GIS-BIM technology in the optimization design of road network in mountainous city[J]. Journal of Chongqing Jiaotong University(Natural Science), 2017, 36(4): 91-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201704016.htm