留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小样本下基于迁移学习与LSTM的雾天高速公路车辆跟驰模型

刘钦 宋太龙 李振龙 赵晓华

刘钦, 宋太龙, 李振龙, 赵晓华. 小样本下基于迁移学习与LSTM的雾天高速公路车辆跟驰模型[J]. 交通信息与安全, 2023, 41(1): 13-22. doi: 10.3963/j.jssn.1674-4861.2023.01.002
引用本文: 刘钦, 宋太龙, 李振龙, 赵晓华. 小样本下基于迁移学习与LSTM的雾天高速公路车辆跟驰模型[J]. 交通信息与安全, 2023, 41(1): 13-22. doi: 10.3963/j.jssn.1674-4861.2023.01.002
LIU Qin, SONG Tailong, LI Zhenlong, ZHAO Xiaohua. A Car-following Model for Expressway under Foggy Weather Based on Transfer Learning and LSTM with Small-sample[J]. Journal of Transport Information and Safety, 2023, 41(1): 13-22. doi: 10.3963/j.jssn.1674-4861.2023.01.002
Citation: LIU Qin, SONG Tailong, LI Zhenlong, ZHAO Xiaohua. A Car-following Model for Expressway under Foggy Weather Based on Transfer Learning and LSTM with Small-sample[J]. Journal of Transport Information and Safety, 2023, 41(1): 13-22. doi: 10.3963/j.jssn.1674-4861.2023.01.002

小样本下基于迁移学习与LSTM的雾天高速公路车辆跟驰模型

doi: 10.3963/j.jssn.1674-4861.2023.01.002
基金项目: 

国家自然科学基金项目 61876011

详细信息
    作者简介:

    刘钦(1998—),硕士研究生. 研究方向:智能交通. E-mail:liuqinjoany@emails.bjut.edu.cn

    通讯作者:

    李振龙(1976—),博士,教授. 研究方向:智能交通、交通安全等. E-mail:lzl@bjut.edu.cn

  • 中图分类号: U491.2+6

A Car-following Model for Expressway under Foggy Weather Based on Transfer Learning and LSTM with Small-sample

  • 摘要: 由于在现实生活中能够采集到的不同雾天等级的高速公路车辆跟驰样本有限,导致雾天跟驰模型精度不佳,为此在长短时记忆神经网络(long short-term memory,LSTM)跟驰模型的基础上,采用迁移学习(transfer learning,TL)方法来提升雾天跟驰模型的性能。利用驾驶模拟实验平台搭建高速公路雾天与正常天气2种实验场景进行驾驶模拟实验,获得296组正常天气下(源域)的跟驰样本与100组雾天下(目标域)的跟驰样本。提出了基于最长公共子序列(longest common sequence solution,LCSS)的迁移样本选择方法,从源域中选出100个样本迁移至目标域中,通过扩大训练样本提升LSTM从源域、目标域特征到目标域输出的端对端泛化学习能力,得到雾天高速公路车辆跟驰模型。为对比所提样本迁移方法对LSTM模型的效用,将LSTM-TL模型与训练样本全部来源于源域的LSTM-S模型和训练样本全部来源于目标域的LSTM-T模型进行对比,LSTM-TL模型的均方误差、均方根误差和平均绝对误差比LSTM-S模型分别减小47.5%、27.7%和46.5%,比LSTM-T模型减小31.1%、17.0%和29.9%。为对比不同模型在仅有100组目标域样本时的性能,将LSTM-TL模型与Gipps、IDM、BP这3个模型进行对比,LSTM-TL模型的均方误差、均方根误差和平均绝对误差比3个模型中表现最优的Gipps模型减小18.5%、8.0%和25.9%。结果表明:直接将LSTM-S模型应用于目标域的预测,其精度不高,采用样本迁移合理可行;LCSS方法对源域样本筛选有效,由100个源域样本迁移到目标域训练得到的LSTM-TL模型的精度最高;在小样本情况下,拥有较少参数的Gipps模型预测精度优于LSTM-T或LSTM-S模型,但由于迁移学习能够从源域样本中获取知识的特性,LSTM-TL模型有着最高的精度。

     

  • 图  1  驾驶模拟实验平台

    Figure  1.  Driving simulation experiment platform

    图  2  实验区段划分

    Figure  2.  Experimental section division

    图  3  正常与雾天驾驶实验场景

    Figure  3.  Normal and fog driving test scenarios

    图  4  各特征分布情况

    Figure  4.  Distribution of each feature

    图  5  跟驰模型框架

    Figure  5.  Car-following model framework

    图  6  记忆块结构

    Figure  6.  Structure of memory block

    图  7  LSTM-TL跟驰模型结构图

    Figure  7.  LSTM-TL car-following model structure diagram

    表  1  跟驰样本统计信息

    Table  1.   Car-following sample statistics

    场景 速度(/km/h) 加速度(/m/s2 车头间距/m
    均值 标准差 最大值 最小值 标准差 均值 标准差
    雾天 61.660 15.595 3.335 -7.393 0.685 51.463 20.365
    正常 78.812 6.860 1.351 -7.545 0.484 65.156 27.722
    下载: 导出CSV

    表  2  各实验组样本构成

    Table  2.   Sample composition of each experimental group

    实验组别 训练样本数量/个
    目标域 源域
    组1 90 50
    组2 90 100
    组3 90 150
    组4 90 200
    组5 90 250
    组6 90 296
    下载: 导出CSV

    表  3  实验组结果

    Table  3.   Results of each group

    实验组别 训练样本数量/个 均方误差 均方根误差 平均绝对误差
    目标域 源域
    组1 90 50 0.344 0.587 0.303
    组2 90 100 0.195 0.442 0.212
    组3 90 150 0.206 0.454 0.211
    组4 90 200 0.240 0.489 0.253
    组5 90 250 0.257 0.506 0.248
    组6 90 296 0.292 0.540 0.240
    下载: 导出CSV

    表  4  模型参数标定结果

    Table  4.   Parameters values of model after calibrations

    模型 参数 解释 均值 标准差
    Gipps Vn/(m/s) 跟驰车辆期望的速度 16.68 2.63
    an/(m/s2 跟驰车辆期望加速度 0.10 0.06
    bn/(m/s2 跟驰车辆期望减速度 4.78 0.88
    bn - 1/(m/s2 驾驶员估计前车突然刹车时的最大减速度 1.84 0.67
    IDM Vmax/(m/s) 跟驰车辆的期望车速 17.16 3.16
    amax(n)/(m/s2 驾驶人期望的最大加速度 0.30 0.23
    bn/(m/s2 跟驰车辆期望减速度 4.96 0.51
    T(n)/s 驾驶人期望的车头时距 3.99 0.31
    s0(n) /m 跟驰车辆停车时期望的车头间距 124.60 15.43
    s1(n) 距离参数 3.68 0.84
    δ 加速参数 4.05 1.16
    下载: 导出CSV

    表  5  模型结果对比

    Table  5.   Comparison results of each model

    模型 训练样本数量/个 均方误差 均方根误差 平均绝对误差
    目标域 源域
    LSTM-TL 90 100 0.195 0.442 0.212
    LSTM-T 90 0 0.283 0.532 0.302
    LSTM-S 0 90 0.373 0.611 0.396
    Gipps 90 0 0.231 0.48 0.267
    IDM 90 0 0.279 0.528 0.304
    BP 90 0 0.396 0.629 0.419
    下载: 导出CSV

    表  6  实验组结果

    Table  6.   Results of each group

    实验组别 训练样本数量/个 均方误差 均方根误差 平均绝对误差
    目标域 源域
    组7 90 后100 0.312 0.558 0.289
    组2 90 前100 0.195 0.442 0.212
    下载: 导出CSV
  • [1] 陈学浩, 季君, 江海龙. 浅析雾天高速公路事故成因及管控要点[J]. 中国公共安全(学术版), 2010, 20(3): 96-98. doi: 10.3969/j.issn.1672-2396.2010.03.022

    CHEN X H, JI Q, JIANG H L. Analysis of highway traffic accidents causes and traffic control points in the fog[J]. China Public Security(Academy Edition), 2010, 20(3): 96-98. (in Chinese) doi: 10.3969/j.issn.1672-2396.2010.03.022
    [2] KANG J, NI R, ANDERSEN G. Effects of reduced visibility from fog on car-following performance[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008(2069): 9-15.
    [3] BROOKS J O, CRISLER M C, KLEIN N, et al. Speed choice and driving performance in simulated foggy conditions[J]. Accident Analysis & Prevention, 2011, 43(3): 698-705.
    [4] WHITE M E, JEFFERY D J. Some aspects of motorway traffic behaviour in fog[R]. Crowthorne, UK: Transport and Road Research Laboratory, 1980.
    [5] SAFFARIAN M, HAPPEE R, WINTER J C F. Why do driv ers maintain short headways in fog? A driving-simulator study evaluating feeling of risk and lateral control during automated and manual car following[J]. Ergonomics, 2012, 55 (9): 971-985. doi: 10.1080/00140139.2012.691993
    [6] 薛晴婉, 徐嘉伟, 闫学东, 等. 雾天驾驶人车辆操纵行为特性及其与追尾风险相关性分析[J]. 交通信息与安全, 2022, 40 (1): 19-27. doi: 10.3963/j.jssn.1674-4861.2022.01.003

    XUE Q W, XU J W, YAN X D, et al. A study on the correlation between vehicle control behaviors and rear-end collision risk under foggy conditions[J]. Journal of Transport Information and Safety, 2022, 40(1): 19-27. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.01.003
    [7] BROUGHTON K L M, SWITZER F, SCOTT D. Car following decisions under three visibility conditions and two speeds tested with a driving simulator[J]. Accident Analysis & Prevention, 2007, 39(1): 106-116.
    [8] 高坤, 涂辉招, 时恒, 等. 雾霾天气低能见度对不同跟驰状态驾驶行为的影响[J]. 吉林大学学报(工学版), 2017, 47 (6): 1716-1727. doi: 10.13229/j.cnki.jdxbgxb201706007

    GAO K, TU H Z, SHI H, et al. Effect of low visibility in haze weather condition on longitudinal driving behavior in different car-following stages[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6): 1716-1727. (in Chinese) doi: 10.13229/j.cnki.jdxbgxb201706007
    [9] HOOGENDOORN R G, HOOGENDOORN S P, BROOKHUIS K A, et al. Simple and multi-anticipative car-following models: performance and parameter value effects in case of fog[C]. The Transportation Research Board (TRB)Traffic Flow Theory and Characteristics Committee(AHB45)Summer Meeting, Annecy, France: TRB, 2010.
    [10] 刘兆惠, 虞春滨, 王超, 等. 雾天环境对高速公路车辆跟驰安全的影响[J]. 重庆交通大学学报(自然科学版), 2019, 38 (9): 88-94. doi: 10.3969/j.issn.1674-0696.2019.09.15

    LIU Z H, YU C B, WANG C, et al. Influence of foggy environment on expressway car-following safety[J]. Journal of Chongqing Jiaotong University(Natural Science), 2019, 38 (9): 88-94. (in Chinese) doi: 10.3969/j.issn.1674-0696.2019.09.15
    [11] 于乐美, 张萌萌, 王星月. 基于跟驰模型的雾天安全限速模拟研究[J]. 科学技术与工程, 2018, 18(33): 224-229. doi: 10.3969/j.issn.1671-1815.2018.33.035

    YU L M, ZHANG M M, WANG X Y. Simulation study on safety speed limit of fog weather based on car following model[J]. Science Technology and Engineering, 2018, 18 (33): 224-229. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.33.035
    [12] 刘展宏, 杨秀建, 吴相稷, 等. 基于元胞自动机的雾天车辆跟驰建模与仿真[J]. 系统仿真学报, 2021, 33(10): 2399-2410. doi: 10.16182/j.issn1004731x.joss.20-0598

    LIU Z H, YANG X J, WU X J, et al. Modeling and simulation of car following in fog based on cellular automata[J]. Journal of System Simulation, 2021, 33(10): 2399-2410. (in Chinese) doi: 10.16182/j.issn1004731x.joss.20-0598
    [13] TAN J, GONG L, QIN X. An extended car-following model considering the low visibility in fog on a highway with slopes[J]. International Journal of Modern Physics C, 2019, 30(11): 1950090. doi: 10.1142/S0129183119500906
    [14] GONG B, WANG F, LIN C, et al. Modeling HDV and CAV mixed traffic flow on a foggy two-lane highway with cellular automata and game theory model[J]. Sustainability, 2022, 14 (10): 5899. doi: 10.3390/su14105899
    [15] HUANG Y, YAN X, LI X, et al. Improving car-following model to capture unobserved driver heterogeneity and following distance features in fog condition[J/OL]. (2022-03-20) [2022-03-30]. https://doi.org/10.1080/23249935.2022.2048917
    [16] PANWAI S, DIA H. Neural agent car-following models[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(1): 60-70. doi: 10.1109/TITS.2006.884616
    [17] HUANG X, SUN J, SUN J. A car-following model considering asymmetric driving behavior based on long short-term memory neural networks[J]. Transportation Research Part C: Emerging Technologies, 2018(95): 346-362.
    [18] ZHOU M, QU X, LI X. A recurrent neural network based microscopic car following model to predict traffic oscillation[J]. Transportation Research Part C: Emerging Technologies, 2017(84): 245-264.
    [19] 孙倩, 郭忠印. 基于长短期记忆神经网络方法的车辆跟驰模型[J]. 吉林大学学报(工学版), 2020, 50(4): 1380-1386.

    SUN Q, GUO Z Y. Vehicle following model based on long short⁃term memory neural network[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1380-1386. (in Chinese)
    [20] YAO Y, DORETTO G. Boosting for transfer learning with multiple sources[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA: IEEE, 2010.
    [21] 刘三民, 刘余霞. 基于实例迁移的数据流分类挖掘方法[J]. 信息与控制, 2019, 48(3): 380-384.

    LIU S M, LIU Y X. Classification mining method for data streams based on instances transfer[J]. Information and Control, 2019, 48(3): 380-384. (in Chinese)
    [22] 闻克宇, 赵国堂, 何必胜, 等. 基于改进迁移学习的高速铁路短期客流时间序列预测方法[J]. 系统工程, 2020, 38(3): 73-83.

    WEN K Y, ZHAO G T, HE B S, et al. An improved transfer learning based on time series prediction method for the high-speed rail short-term volume[J]. Systems Engineering, 2020, 38(3): 73-83. (in Chinese)
    [23] 中华人民共和国国家质量监督检验检疫总局. 雾的预报等级: GB/T 27964—2011[S]. 北京: 中国标准出版社, 2012.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Grade of fog forecast: GB/T 27964—2011[S]. Beijing: Standards Press of China, 2012. (in Chinese)
    [24] 中华人民共和国国家质量监督检验检疫总局. 道路交通标志和标线: GB 5768—2009[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Road traffic signs and markings: GB 5768—2009[S]. Beijing: Standards Press of China, 2009. (in Chinese)
    [25] 王雪松, 朱美新, 邢祎伦. 基于自然驾驶数据的避撞预警对跟车行为影响[J]. 同济大学学报(自然科学版), 2016, 44 (7): 1045-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201607010.htm

    WANG X S, ZHU M X, XING Y L. Impacts of collision warning system on car-following behavior based on naturalistic driving data[J]. Journal of Tongji University(Natural Science), 2016, 44(7): 1045-1051. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201607010.htm
    [26] 郭文月, 刘海砚, 孙群, 等. 利用最长公共子序列度量线要素相似性的方法[J]. 测绘科学技术学报, 2018, 35(5): 518-523. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201805015.htm

    GUO W Y, LIU H Y, SUN Q, et al. A geometric similarity measure method of linear features based on longest common sequence[J]. Journal of Geomatics Science and Technology, 2018, 35(5): 518-523. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201805015.htm
    [27] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
    [28] 张耀伟. 面向多场景的循环神经网络与Gipps组合的车辆跟驰模型研究[D]. 北京: 北京工业大学, 2020.

    ZHANG Y W. Research on car-following model combining recurrent neural network and Gipps for multiple scenarios[D]. Beijing: Beijing University of Technology, 2020.
    [29] 黄岩, 闫学东, 李晓梦, 等. 基于多用户驾驶模拟平台的雾天高速公路跟驰模型参数标定及验证[J]. 中国公路学报, 2022, 35(8): 320-330.

    HUANG Y, YAN X D, LI X M, et al. Parameters calibration and validation for car-following models in freeway under foggy conditions based on multi-user driving simulator system[J]. China Journal of Highway and Transport, 2022, 35 (8): 320-330. (in Chinese)
    [30] TREIBER M, HENNECKE A, HELBING D. Congested Traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2): 1805-1824.
    [31] HOOGENDOORN R G, TAMMINGA G, HOOGENDOORN S P, et al. Longitudinal driving behavior under adverse weather conditions: Adaptation effects, model performance and freeway capacity in case of fog[C]. 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal: IEEE, 2010.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  949
  • HTML全文浏览量:  400
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 网络出版日期:  2023-05-13

目录

    /

    返回文章
    返回