A Method for Optimizing the Design of Evacuation Streamline for Multimodal Passenger Transportation Hubs
-
摘要: 综合客运枢纽内部人员密集、通道网络复杂,且进出口数量较多,客流疏散效率不易提高。针对这个问题,不同于现有研究大多考虑改造物理设施,本文提出了通过控制通道开闭状态及通行流向,充分发挥既有设施通行能力的疏散流线设计优化方法。设计了由系统输入、疏散仿真及疏散流线优化模块组成的疏散流线设计仿真优化框架。其中,系统输入模块包含疏散需求、疏散网络、疏散行为参数;疏散仿真模块用于给定疏散流线方案下疏散效率的模拟测算;疏散流线优化模块则基于疏散仿真模拟结果迭代优化疏散流线方案。疏散仿真方面,考虑到行人在疏散途中可能动态修改疏散路线的特点,基于Logit模型构建了行人疏散择路行为模型。疏散流线优化方面,为提高疏散效率,避免局部通道过于拥挤,设计了以整体疏散时长、所有个体总疏散时间和通道最大饱和度最低为目标的疏散流线优化模型,并应用基于NSGA-Ⅲ的疏散流线多目标优化算法进行求解。以虹桥火车站到达层疏散场景为例开展模型验证,结果表明:相比于常规情况无特殊流线设计的疏散方案,优化方案的整体疏散时长、所有个体总疏散时间和通道最大饱和度分别降低36.2%、16.6%、51.6%。该方法对建设安全高效的综合客运枢纽内部行人疏散系统具有较好的参考及应用价值。Abstract: Multimodal passenger transportation hubs are typically crowded by pedestrians, and are composed of complex corridor networks, multiple entrances, and exits. It has been challenging to improve the evacuation efficiency of multimodal passenger transportation hubs. To address this challenge, most of previous studies focus on the layout redesign of facilities, while this study proposes a method to fully utilize the existing facility capacity by controlling the opening/closing state and walking direction of corridors. A simulation-based optimization framework for designing the evacuation streamline is proposed, including system input, simulation for the evacuation process, and optimization modules for the evacuation streamline. The input module of the system requires to specify the following three parameters: evacuation demand, evacuation network, and evacuation behavior. The evacuation simulation module is used to evaluate the efficiency of passenger evacuation under a specific plan of evacuation streamline. The optimization of evacuation streamline plan is conducted by the optimization module based on the results of evacuation simulation runs. Regarding the evacuation simulation, as pedestrians may dynamically modify their evacuation routes, a dynamic model for simulating route choice behavior is developed based on the Logit modeling framework. An optimization model of evacuation streamline is designed to minimize overall evacuation time, total evacuation duration of all individuals, and the level of maximum corridor saturation. An optimization algorithm for multi-objective evacuation streamline is developed based on the NSGA-Ⅲ. The proposed method is validated based on an evacuation scenario of the arrival level of Hongqiao Railway Station. Study results indicate that, compared to the conventional evacuation scenarios without an optimized design of evacuation streamline, the overall evacuation time, total evacuation duration and corridor maximum saturation of the optimized scenario are reduced by 36.2%, 16.6%, and 51.6%, respectively. In general, the proposed method should be beneficial for developing a safe and efficient pedestrian evacuation plan for the multimodal passenger transportation hubs.
-
表 1 需求生成函数参数取值
Table 1. Values of demand generation function parameters
入口类型 入口位置 max/(人/s) t1/s t2/s 总需求量/人 铁路到达入口 西 5 45 15 1 908 中 6 45 15 东 7 45 15 地铁到达入口 西 3 45 15 318 扶梯入口 西 2 45 15 530 东 3 45 15 表 2 疏散流线方案对比
Table 2. Comparison of evacuation streamline plans
评价指标 流线优化方案A2 全双向通行方案A0
(A2相对于A0的优化比例/%)全单向通行方案A1
(A2相对于A1的优化比例/%)整体疏散时长/s 146 229
(-36.2)175
(-16.6)所有个体总疏散时间/s 478 138 573 365
(-16.6)485 005
(-1.4)通道最大饱和度 0.95 1.96
(-51.6)1.41
(-32.8) -
[1] 李明华, 袁振洲, 许琰, 等. 基于那个人点排队模型的多出口疏散优化模型研究[J]. 交通运输系统工程与信息, 2015, 15(4): 166-172. doi: 10.3969/j.issn.1009-6744.2015.04.026LI M H, YUAN Z Z, XU Y, et al. An optimization model of multi-exit evacuation based on point queue model[J]. Journal of Transporation Systems Engineering & Information Technology, 2015, 15(4): 166-172. (in Chinese) doi: 10.3969/j.issn.1009-6744.2015.04.026 [2] GALáN S F. Fast Evacuation method: using an effective dynamic floor field based on efficient pedestrian assignment[J]. Safety Science, 2019(120): 79-88. [3] LIU H, XU B, LU D J, et al. A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm[J]. Applied Soft Computing, 2018, (68): 360-376. [4] FENG L, MILLER-HOOKS E. A network optimization-based approach for crowd management in large public gatherings[J]. Transportation Research Part C: Emerging Technologies, 2014, (42): 182-199. [5] TANEJA L, BOLIA N B. Network redesign for efficient crowd flow and evacuation[J]. Applied Mathematical Modelling, 2018, (53): 251-266. [6] 郭海湘, 曾杨, 陈卫明. 基于社会力模型的多出口室内应急疏散仿真研究[J]. 系统仿真学报, 2021, 33(3): 721-731.GUO H X, ZENG Y, CHEN W M. Research on indoor emergency evacuation simulation of multi-exit based on social force model[J]. Journal of System Simulation, 2021, 33(3): 721-731. (in Chinese) [7] 张蜇. 城市轨道交通车站客流集散优化控制研究[D]. 北京: 北京交通大学, 2017.ZHANG Z. Study on optimization-based control of passenger flow distribution in subway stations[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese) [8] JIN C J, JIANG R, WONG S C, et al. Observational characteristics of pedestrian flows under high-density conditions based on controlled experiments[J]. Transportation Research Part C: Emerging Technologies, 2019, (109): 137-54. [9] 叶锐. 通道中单向与相向行人流运动特征的实验研究[D]. 合肥: 中国科学技术大学, 2020.YE R. Experimental study on uni-and bidirectional pedestrian flows in corridors[D]. Hefei: University of Science and Technology of China, 2020. (in Chinese) [10] 李贺楠, 严建伟. 高铁枢纽应急疏散流线和空间设计方法研究[J]. 天津大学学报(社会科学版), 2013, 15(2): 135-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXS201302006.htmLI H N, YAN J W. Research on the emergency evacuation streamline and space design of the high-speed railway station[J]. Journal of Tianjin University (Social Sciences), 2013, 15(2): 135-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXS201302006.htm [11] 综合交通运输标准化技术委员会. 综合客运枢纽术语: JT/ T 1065-2016[S]. 北京: 中国标准出版社, 2016.Comprehensive Transportation Standardization Technical Committee. The terminology of integrated passenger transportation hub: JT/T 1065-2016[S]. Beijing: Standards Press of China, 2016. (in Chinese) [12] 徐丽敏. 基于旅客集散行为的大型客运枢纽旅客流线优化研究[D]. 重庆: 重庆交通大学, 2014.XU L M. Study on the passenger flow of large transportation hub based on the behavior of distribution passenger[D]. Chongqing: Chongqing Jiaotong University, 2014. (in Chinese) [13] GUO K, ZHANG L M. Simulation-based passenger evacuation optimization in metro stations considering multi-objectives[J]. Automation in Construction, 2022(133): 104010. [14] SHIN Y, KIM S, MOON I. Simultaneous evacuation and entrance planning in complex building based on dynamic network flows[J]. Applied Mathematical Modelling, 2019, (73): 545-562. [15] 李东, 汪定伟. 基于仿真的优化方法综述[J]. 控制工程, 2008, 15(6): 672-677, 702. doi: 10.3969/j.issn.1671-7848.2008.06.015LI D, WANG D W. A survey on simulation-based optimization[J]. Control Engineering of China, 2008, 15(6): 672-677, 702. (in Chinese) doi: 10.3969/j.issn.1671-7848.2008.06.015 [16] ANH-TUAN N, REITER S, RIGO P. A review on simulation-based optimization methods applied to building performance analysis[J]. Applied Energy, 2014(113): 1043-1058. [17] 汪瑞琪, 张缨. 城市轨道交通车站内客流集散瓶颈识别及排序方法[J]. 交通信息与安全, 2017, 35(1): 71-79, 91. doi: 10.3963/j.issn.1674-4861.2017.01.009WANG R Q, ZHANG Y. Identification and ranking approaches of bottleneck for gathering and distributing capacity in stations of urban rail transit[J]. Journal of Transport Information and Safety, 2017, 35(1): 71-79, 91. (in Chinese) doi: 10.3963/j.issn.1674-4861.2017.01.009 [18] 王志刚, 石嵘, 高伟君. 上海轨道交通车站乘客走行时间函数的分析[J]. 城市轨道交通研究, 2010, 13(12): 57-60.WANG Z G, SHI R, GAO W J. Analysis of passengers' walking time function at Shanghai urban railway station[J]. Urban Mass Transit, 2010, 13(12): 57-60. (in Chinese) [19] 马剑, 许素梅, 范文博, 等. 大规模人群网络流瓶颈识别方法研究[J]. 系统工程理论与实践, 2016, 36(1): 164-173. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201601017.htmMA J, XU S M, FAN W B, et al. Method of bottleneck identification for massive crowd circulating network[J]. Systems Engineering-Theory & Practice, 2016, 36(1): 164-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201601017.htm [20] 董崇杰, 刘毅, 彭勇. 改进布谷鸟算法在人群疏散多目标优化中的应用[J]. 系统仿真学报, 2016, 28(5): 1063-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201605009.htmDONG C J, LIU Y, PENG Y. Improved cuckoo search algorithm applied to multi-objective optimization of crowd evacuation[J]. Journal of System Simulation, 2016, 28(5): 1063-1069. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201605009.htm [21] 孙迪, 周进, 高学英, 等. 地铁站内行人疏散路径选择仿真研究[J]. 系统仿真学报, 2019, 31(9): 1819-1826.SUN D, ZHOU J, GAO X Y, et al. Simulation Research on pedestrian evacuation path selection in the metro station[J]. Journal of System Simulation, 2019, 31(9): 1819-1826. (in Chinese) [22] MEURER A, SMITH CP, PAPROCKI M, et al. SymPy: symbolic computing in Python[J]. PeerJ Computer Science, 2017, 3(3): 1-27. [23] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part Ⅰ: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. [24] 全国公共安全基础标准化技术委员会(SAC/TC 351). 地铁安全疏散规范: GB/T 33668-2017[S]. 北京: 中国标准出版社, 2017.China National Public Safety Fundamental Standardization Technical Committee(SAC/TC 351). Code for safety evacuation of metro: GB/T 33668-2017[S]. Beijing: Standards Press of China, 2017. (in Chinese) [25] 赵启凡, 李多, 戴一正. 基于疏散模拟的铁路客站换乘站厅商业空间优化策略: 以上海虹桥铁路客站为例[J]. 新建筑, 2021(2): 104-109.ZHAO Q F, LI D, DAI Y Z. Research on commercial space of transfer station hall based on pathfinder: the case of Shanghai Hongqiao Railway Passenger Station[J]. New Architecture, 2021(2): 104-109. (in Chinese)