A Method for Evaluating Recovery Strategies for Cascade Failures of Metro Networks
-
摘要: 恢复策略效果评估对地铁网络级联失效事件后的应急修复决策有着重要作用,关系到地铁网络运营安全水平。针对地铁网络级联失效现象,从系统韧性角度提出了1种恢复策略效果评估方法。建立了基于地铁节点客流分布特征的恢复节点分配函数,将恢复策略融入级联失效过程,构建了带恢复策略的网络级联失效模型。采用网络效率与连通性能表征系统机能,引入系统机能曲线量化系统韧性,利用Python仿真评估了随机恢复、重要度优先恢复和节点度优先恢复3种恢复策略的效果。以西安市轨道交通网络为对象开展仿真实验,结果显示:在单一策略效果评估时,节点恢复比例的增大可以提高恢复策略效果,表现为抵抗与恢复阶段更低的系统损伤值与更快的恢复速率。而在不同策略效果比较时,重要度优先恢复策略表现最佳,2类韧性指标均值较节点度优先恢复分别提升了11.9%及3.4%,比随机恢复分别提升了7.6%和1.2%。相比传统模型,提出的模型在失效蔓延速度、系统性能变化与实际交通级联失效过程拟合效果更佳。研究表明:在地铁网络级联失效的影响下,采用重要度优先恢复策略并增加节点恢复比例可以达到更优的恢复效果。仿真结果能够更加准确地描述突发扰动事件对系统性能的影响过程,为实际地铁网络级联失效现象的预防和恢复策略决策提供了参考依据。Abstract: The effectiveness of recovery strategies plays a vital role in emergency response after cascading failures take place in a metro network, which is closely related to its operation safety. To address the cascading failures in metro networks, a method for evaluating the efficiency of recovery strategies is proposed from a system resilience perspective. A function for allocating recovery nodes is established based on the characteristics of the distribution of passenger flows at metro stations. And a model of network cascade failure with recovery strategy is developed by integrating the recovery strategy into the cascade failure process. Then, network efficiency and connectivity are used to characterize system functionality, and a system functionality curve is introduced to quantify system resilience. The effectiveness of three recovery strategies, including random recovery, importance priority recovery, and degree priority recovery, are evaluated through Python simulations which are carried out based on the metro network in the city of Xi'an. The results indicate that increasing the node recovery ratio enhances the efficacy of recovery strategies in a singular strategy effectiveness assessment. This enhancement manifests as a reduction in system damage during the resistance and recovery phases, accompanied by an accelerated recovery rate. By comparing different strategies, the strategy of importance priority recovery outperforms the degree priority recovery and the random recovery. Two resilience indicators of the importance priority recovery are 11.9% and 3.4% greater than degree priority recovery, respectively; and 7.6% and 1.2% greater than random recovery, respectively. Compared to traditional models, the proposed model exhibits better goodness of fit for the speed of propagation failure, change of system performance, and process of actual traffic cascading failure. It suggests that under the influence of cascading failures in metro networks, better recovery results can be achieved by adopting an importance priority recovery strategy and increasing node recovery proportion. The simulation results accurately represent the impact of depict disturbance on system performance, aiding decision-making for preventing and recovering from cascading failures in metro networks.
-
表 1 典型节点指标特性
Table 1. Typical node metrics characteristics
典型节点 初始荷载 节点度 节点重要度 所属线路 北大街 245 502 4 0.1508 1、2号线 通化门 160 250 4 0.2119 1、3号线 钟楼 70 489 2 0.0257 2号线 汉城南路 10 540 2 0.0931 5号线 表 2 典型节点不同节点恢复概率下韧性指标
Table 2. Resilience index under different node recovery probabilities of typical nodes
节点 RE RN p = 0 p = 1/8 p = 1/4 p = 3/8 p = 1/2 p = 0 p = 1/8 p = 1/4 p = 3/8 p = 1/2 北大街 0.219 0.650 0.673 0.709 0.726 0.487 0.836 0.889 0.919 0.947 通化门 0.215 0.653 0.722 0.754 0.784 0.497 0.845 0.906 0.941 0.944 钟楼 0.247 0.657 0.681 0.763 0.847 0.520 0.851 0.906 0.930 0.973 汉城南路 0.237 0.684 0.714 0.908 0.908 0.563 0.856 0.979 0.946 0.989 表 3 网络级联时序
Table 3. Timing sequence of cascading failures in network
站点 站点性质 无恢复 带恢复策略时间步 失效时时刻/s 恢复策略 达最大损伤时刻/s 恢复时刻/s 北大街 最大荷载换乘车站 23 C2 11 31 C3 9 30 C4 8 21 通化门 最大节点度换乘车站 25 C2 12 32 C3 10 32 C4 9 22 钟楼 最大荷载非换乘车站 24 C2 10 31 C3 9 31 C4 9 19 汉城南 较大节点度非换乘车站 29 C2 6 33 C3 11 17 C4 4 17 表 4 不同节点被攻击后的韧性值(部分)
Table 4. Resilience values of different nodes after being attacked (partial)
韧性 网络指标 随机恢复 节点度恢复 重要度恢复 荷载 节点度 重要度 RE RN RE RN RE RN 通化门 160 250 4 0.211 0.625 0.906 0.723 0.920 0.663 0.920 北大街 245 502 4 0.150 0.605 0.893 0.674 0.890 0.666 0.917 科技路 70 739 4 0.128 0.625 0.902 0.685 0.899 0.687 0.935 南稍门 111 231 4 0.041 0.632 0.901 0.702 0.906 0.855 0.972 -
[1] ZHANG D M, DU F, HUANG H, et al. Resiliency assessment of urban rail transit networks: Shanghai metro as an example[J]. Safety Science, 2018, 106: 230-243. doi: 10.1016/j.ssci.2018.03.023 [2] WU G, LI M, LI Z S. Resilience-based optimal recovery strategy for cyber-physical power systems considering component multistate failures[J]. IEEE Transactions on Reliability, 2020, 99: 1-15. [3] MOTTR A E, LAI Y C. Cascade-based attacks on complex networks[J]. Phys. Rev. E, 2002, 66(8): 65-102. [4] 谢丰, 程苏琦, 陈冬青, 等. 基于级联失效的复杂网络抗毁性[J]. 清华大学学报(自然科学版), 2011, 51(10): 1252-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201110006.htmXIE F, CHENG S Q, CHEN D Q, et al. Cascade failure-based destructive resistance of complex networks[J]. Journal of Tsinghua University(Natural Science Edition), 2011, 51(10): 1252-1257. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201110006.htm [5] HUANG W, ZHOU B, YU Y, et al. Vulnerability analysis of road network for dangerous goods transportation considering intentional attack: based on cellular automata[J]. Reliability Engineering and System Safety, 2021, 214(3): 107779. [6] 王秋玲, 朱璋元, 陈红, 等. 基于CML的级联失效下异质多层交通网络节点抵抗特性研究[J]. 中国公路学报, 2022, 35 (1): 263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201023.htmWANG Q L, ZHU Z Y, CHEN H, et al. CML-based node resistance characteristics of heterogeneous multilayer traffic networks under cascading failure[J]. Chinese Journal of Highways, 2022, 35(1): 263-274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201023.htm [7] SUN, LISHAN, HIANG, et al. Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China[J]. Transportation Research Part A: Policy and Practice, 2018, 108: 12-24. doi: 10.1016/j.tra.2017.12.008 [8] 黄爱玲, 徐笑涵, 关伟, 等. 基于加权耦合映像格子的地铁网络稳定性演化研究[J]. 交通运输系统工程与信息, 2021, 21 (3): 140-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103017.htmHUANG A L, XU X H, GUAN W, et al. Study on the stability evolution of subway network based on weighted coupled image lattice[J]. Transportation Systems Engineering and Information, 2021, 21(3): 140-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103017.htm [9] 杨景峰, 朱大鹏, 赵瑞琳. 城轨网络站点重要度评估与级联失效抗毁性分析[J]. 中国安全科学学报, 2022, 32(8): 161-167. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202208023.htmYANG J F, ZHU D P, ZHAO R L. Evaluation of station importance and cascade failure resistance analysis of urban rail network[J]. Chinese Journal of Safety Science, 2022, 32(8): 161-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202208023.htm [10] 王德龙, 王超峰. 基于蓄意攻击下的民用机场网络级联失效抗毁性分析[J]. 交通运输工程与信息学报, 2020, 18(3): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202003020.htmWANG D L, WANG C F. Destructive resistance analysis of civil airport network cascade failure based on deliberate attacks[J]. Journal of Transportation Engineering and Information, 2020, 18(3): 172-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202003020.htm [11] 赵善男. 城市公共交通复合系统级联失效及故障恢复策略研究[D]. 北京: 北京交通大学, 2021.ZHAO S N. Research on cascade failure and fault recovery strategy of urban public transportation composite system[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese) [12] 殷勇, 陈锦渠, 朱蔓, 等. 城市轨道交通站点失效修复策略[J]. 西南交通大学学报, 2020, 55(4): 865-872. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202004024.htmYIN Y, CHEN J Q, ZHU M, et al. Urban rail transit station failure repair strategy[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 865-872. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202004024.htm [13] MA F, LIANG Y, YUEN K F, et al. Assessing the vulnerability of urban rail transit network under heavy air pollution: A dynamic vehicle restriction perspective[J]. Sustainable Cities and Society, 2020, 52: 101851. [14] 张洁斐, 任刚, 马景峰, 等. 基于韧性评估的地铁网络恢复时序决策方法[J]. 交通运输系统工程与信息, 2020, 20(4): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004003.htmZHANG J F, REN G, MA J F, et al. Time-series decision method for subway network rehabilitation based on toughness assessment[J]. Transportation Systems Engineering and Information, 2020, 20(4): 14-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004003.htm [15] 李钊, 郭燕慧, 徐国爱, 等. 复杂网络中带有应急恢复机理的级联动力学分析[J]. 物理学报, 2014, 63(15): 417-428. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201415059.htmLI Z, GUO Y H, XU G A, et al. Analysis of cascade dynamics with contingency recovery mechanism in complex networks[J]. Journal of Physics, 2014, 63(15): 417-428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201415059.htm [16] 唐亮, 焦鹏, 李纪康, 等. 带恢复策略的复杂网络级联失效机理及鲁棒性研究[J]. 控制与决策, 2018, 33(10): 1841-1850. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201810016.htmTANG L, JIAO P, LI J K, et al. Cascade failure mechanism and robustness study of complex networks with recovery strategy[J]. Control and Decision, 2018, 33(10): 1841-1850. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201810016.htm [17] 左磊. 基于复杂网络的城市公交网络特性分析[D]. 南京: 东南大学, 2015ZUO L. Analysis of urban bus network characteristics based on complex networks[D]. Nanjing: Southeast University, 2015. (in Chinese) [18] 窦炳琳, 张世永. 复杂网络上级联失效的负载容量模型[J]. 系统仿真学报, 2011, 23(7): 1459-1463, 1468. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201107035.htmDOU B L, ZHANG S Y. Load capacity model for cascading failures on complex networks[J]. Journal of System Simulation, 2011, 23(7): 1459-1463, 1468. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201107035.htm [19] GREENBERG A, HAMILTON J, MALTZ D A, et al. The cost of a cloud: research problems in data center networks[J]. Computer Communication Review, 2008, 39(1): 68-73. [20] 吕彪, 管心怡, 高自强. 地铁网络服务韧性评估与最优恢复策略[J]. 交通运输系统工程与信息, 2021, 21(5): 198-205, 221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105021.htmLYU B, GUAN X Y, GAO Z Q. Subway network service resilience assessment and optimal recovery strategy[J]. Transportation System Engineering and Information, 2021, 21(5): 198-205, 221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105021.htm [21] 陈长坤, 何凡, 赵冬月, 等. 基于系统机能曲线的城市道路公共交通系统韧性评估方法[J]. 清华大学学报(自然科学版), 2022, 62(6): 1016-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202206005.htmCHEN C K, HE F, ZHAO D Y, et al. A resilience assessment method for urban road public transportation system based on system function curve[J]. Journal of Tsinghua University(Natural Science Edition), 2022, 62(6): 1016-1022. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202206005.htm