留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向航班高峰期的机场地勤车辆多阶段优化调度方法

祁欣月 张健 姜涵

祁欣月, 张健, 姜涵. 面向航班高峰期的机场地勤车辆多阶段优化调度方法[J]. 交通信息与安全, 2023, 41(6): 71-81. doi: 10.3963/j.jssn.1674-4861.2023.06.008
引用本文: 祁欣月, 张健, 姜涵. 面向航班高峰期的机场地勤车辆多阶段优化调度方法[J]. 交通信息与安全, 2023, 41(6): 71-81. doi: 10.3963/j.jssn.1674-4861.2023.06.008
QI Xinyue, ZHANG Jian, JIANG Han. Multi-Stage Optimization Method for Dispatch of Ground-Service Vehicles at the Airports During Peak Flight Period[J]. Journal of Transport Information and Safety, 2023, 41(6): 71-81. doi: 10.3963/j.jssn.1674-4861.2023.06.008
Citation: QI Xinyue, ZHANG Jian, JIANG Han. Multi-Stage Optimization Method for Dispatch of Ground-Service Vehicles at the Airports During Peak Flight Period[J]. Journal of Transport Information and Safety, 2023, 41(6): 71-81. doi: 10.3963/j.jssn.1674-4861.2023.06.008

面向航班高峰期的机场地勤车辆多阶段优化调度方法

doi: 10.3963/j.jssn.1674-4861.2023.06.008
基金项目: 

国家重点研发计划项目 2021YFB1600500

西藏自治区自然科学基金项目 XZ202201ZR0040G

详细信息
    作者简介:

    祁欣月(1997—),硕士研究生.研究方向:智慧机场. E-mail: q17852056315@163.com

    通讯作者:

    张健(1984—),博士,教授. 研究方向:智能交通、机场场面协同管控等. E-mail: zhangjian8seu@163.com

  • 中图分类号: TP301

Multi-Stage Optimization Method for Dispatch of Ground-Service Vehicles at the Airports During Peak Flight Period

  • 摘要: 在航班运行高峰时段内,地面服务需求更加集中,机场可调度的地勤车辆数量有限,可能引发航班延误,导致机场多方面损失。针对该问题,研究了地勤车辆多阶段优化调度方法,重点考虑摆渡车和加油车2种地勤保障车路由与时间窗口限制,以航班准点率及延误时间为评价指标进行优化调度。构建了具有4类节点和5类弧的容量-费用网络G1,通过设置合适弧容量及费用参数,确定最小费用流规划模型;采用拉格朗日松弛启发式算法对模型求解,通过不断寻优,设置对偶间隙初值、容许误差,最大迭代次数,输出预测结果;深入分析高峰时段的航班运行状态,构建基于时空网络的整数线性规划模型,优化第一阶段未服务航班的总延误时间;结合最小化最大值定理,构建单航班服务延误模型,将单个航班延误造成的损失降到最低。最后,基于实际航班数据,结合机坪平面布局开展仿真实验和验证,结果表明:利用优化调度得到加油车和摆渡车准时服务的最大航班数分别为30,131架?次,待服务航班的最小总延误时间分别为223,542 min,航班总延误下降21.56%,显著缩短航班延误时间,提升了机场场面的整体运行效率。

     

  • 图  1  航班地面保障作业基本流程

    Figure  1.  Basic process of flight ground protection operation

    图  2  拉格朗日松弛启发式算法流程

    Figure  2.  Lagrangian relaxation heuristic algorithm flow

    图  3  G1容量-费用网络示意图

    Figure  3.  G1 Capacity-cost network schematic

    图  4  时空网络基本图G2

    Figure  4.  Basic diagram of space-time network G2

    图  5  机场场面基本布局示意图

    Figure  5.  Basic layout of the airport field

    图  6  模型Ⅰ求解加油车、摆渡车调度迭代过程

    Figure  6.  Model Ⅰ solves the iterative process of fuel truck and ferry scheduling

    图  7  多种优化算法求解最小费用流模型的效果对比

    Figure  7.  Comparison of the effectiveness of various optimizationalgorithms for solving minimum cost flow models

    表  1  机场地面保障车辆功能及服务需求

    Table  1.   Airport ground support vehicle function and service requirements

    名称 功能 服务需求
    加油车   主要保障出港航班的燃油需求   小型机场采用罐式加油车,单车容量一般不低于20 000 L;大型机场配备管线及适量罐式,各机场最低配备数量应不少于2辆。
    摆渡车   远机位进出港旅客的接送   B类及以下飞机配备1辆,C类飞机1~2辆,D类飞机2~3辆,E、F类飞机2~4辆。
    下载: 导出CSV

    表  2  航班原始信息(部分)

    Table  2.   Original flight information (partial)

    航班号 起飞时刻 落地时刻 停机位 机型 性质
    B1 11:35 13:26 127 A321 离港
    B2 10:09 11:12 158 B738 离港
    B3 12:52 15:35 712 B738 到港
    B4 07:55 10:34 714 A320 到港
    B5 14:03 16:20 135 B738 离港
    B6 13:00 14:04 139 B738 到港
    B7 14:45 15:44 136 A333 离港
    B8 20:25 21:15 161 B737 离港
    B9 20:37 21:39 524R B738 离港
    B10 21:43 00:07 723 B737 到港
    B11 08:37 09:37 105 B737 离港
    B12 19:33 21:04 724 A320 离港
    B13 14:52 16:36 324 A320 到港
    B14 18:12 20:23 533 B737 离港
    B15 20:32 22:16 111 B737 离港
    下载: 导出CSV

    表  3  不同停机坪之间以及停机坪与车场之间的车辆行驶时间

    Table  3.   Vehicle travel distance between different aprons and between aprons and car parks  单位: min

    地点 停机坪C3 停机坪C5 停机坪C7 停机坪E5 停机坪E3 车场P1
    停机坪C3 0 8 2 4 4 2
    停机坪C5 8 0 8 6 11 9
    停机坪C7 2 8 0 2 4 2
    停机坪E5 4 6 2 0 6 3
    停机坪E3 4 11 4 6 0 5
    车场P1 2 9 2 3 5 0
    下载: 导出CSV

    表  4  机场摆渡车调度方案

    Table  4.   Airport ferry scheduling program

    车辆编号 优先服务航班序列 次服务航班序列 总服务时间/min 车辆编号 优先服务航班序列 次服务航班序列 总服务时间/min
    1 1 → 14 → 27 → 33 → 56 74 210 16 7 → 21 → 35 → 48 62 → 71 234
    2 1 → 14 → 27 → 33 → 56 75 201 17 7 → 20 → 36 → 48 63 → 74 242
    3 2 → 14 → 27 → 34 → 57 None 174 18 8 → 20 → 36 → 49 63 211
    4 2 → 16 → 30 → 34 → 57 None 184 19 8 → 22 → 39 → 49 64 206
    5 2 → 16 → 30 → 43 → 55 72 209 20 9 → 22 → 39 → 50 64 228
    6 3 → 18 → 28 → 43 → 55 72 202 21 9 → 25 → 37 → 50 65 217
    7 3 → 18 → 28 → 44 → 58 None 174 22 10 → 25 → 37 → 51 65 → 75 259
    8 4 → 15 → 29 → 44 → 58 None 174 23 10 → 26 → 38 → 51 66 196
    9 4 → 15 → 29 → 45 → 59 None 181 24 11 → 26 → 38 → 52 67 212
    10 5 → 17 → 29 → 45 → 59 None 174 25 11 → 23 → 42 → 52 68 204
    11 5 → 17 → 31 → 46 → 70 60 223 26 11 → 23 → 42 → 52 68 204
    12 5 → 19 → 31 → 46 → 70 60 224 27 12 → 24 → 41 → 53 66 210
    13 6 → 19 → 32 → 46 → 71 61 216 28 12 → 24 → 41 → 53 67 204
    14 6 → 21 → 32 → 47 61 → 73 246 29 13 → 17 → 54 69 150
    15 7 → 21 → 35 → 47 62 → 73 247 30 13 → 17 → 54 69 150
    下载: 导出CSV

    表  5  机场加油车调度方案

    Table  5.   Airport fuel truck dispatching program

    车辆编号 优先服务航班序列 次服务航班序列 总服务时间/min 车辆编号 优先服务航班序列 次服务航班序列 总服务时间/min
    1 1→18 31 73 9 9→26 None 42
    2 3→20 33 69 10 11→22 None 34
    3 2→17 34 96 11 13→28 None 37
    4 5→25 32 101 12 10→30 None 41
    5 4→24 39 108 13 12→27 None 34
    6 6→19 29 90 14 15 36 45
    7 8→23 35 89 15 16→37 None 34
    下载: 导出CSV
  • [1] 陈邦昌. 关于智慧机场建设的实践与再认识: 以南京禄口机场二期工程为例[J]. 现代交通与冶金材料, 2021, 1(4): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YAJI202104007.htm

    CHEN B C. On the practice and reflection of smart airport building: by the case of Nanjing Lukou international airport phase 2 construction project[J]. Modern Transportation and Metallurgical Materials, 2021, 1(4): 32-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YAJI202104007.htm
    [2] 中国民用航空局. 民航行业发展统计公报[R]. 北京: 中国民用航空局发展计划司, 2021.

    Civil Aviation Administration of China. Civil aviation industry development statistical bulletin[R]. Beijing: Development Planning Division of Civil Aviation Administration of China, 2021. (in Chinese)
    [3] HAN X, ZHAO P X, KONG D X. Abi-objective optimization of airport ferry vehicle scheduling based on heuristic algorithm: a real data case study[J]. Advances in Production Engineering & Management, 2022, 17(2): 183-192.
    [4] 衡红军, 晏晓东. 实现多目标优化的机场特种车辆调度算法[J]. 计算机应用与软件, 2016, 33(10): 238-242. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201610053.htm

    HENG H J, YAN X D. Implementing airport special vehicles scheduling algorithm with multi-objective optimisation[J]. Computer Applications and Software, 2016, 33(10): 238-242. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201610053.htm
    [5] 张凤, 汤晓鹏, 刘兵飞. 机场飞行区无人驾驶清水车优化调度方法[J]. 交通信息与安全, 2022, 40(2): 82-90. doi: 10.3963/j.jssn.1674-4861.2022.02.010

    ZHANG F, TANG X P, LIU B F. An optimization method for scheduling autonomous potable water service vehicles at airfields[J]. Journal of Transport Information and Safety, 2022, 40(2): 82-90. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.010
    [6] DU J Y, BRUNNER J O, KOLISCH R. Planning towing processes at airports more efficiently[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 70: 293-304. doi: 10.1016/j.tre.2014.07.008
    [7] WANG Y, SUN J, SUN B, et al. Research on application of airport tanker truck scheduling based on particle swarm optimization[C]. 6th International Conference on Control, Robotics and Cybernetics(CRC), Shanghai, China: IEEE, 2021.
    [8] YUAN Y, HAN Y, XUE J Y, et al. A dynamic dispatching method in the unmanned airport baggage transportation system[C]. 23th IEEE International Conference on Mobile Data Management(MDM), Paphos, Cyprus: IEEE, 2022.
    [9] BI J, DING C, XIE D, et al. Multiobjective optimization of airport ferry vehicle scheduling during peak hours based on NSGA-Ⅱ[J/OL]. (2022-07-30)[2023-05-06]. https://doi.org/10.1155/2022/7388406.
    [10] 唐非, 张瑞友, 刘树安. 面向机场地面服务的多服务协调调度算法[J]. 控制工程, 2020, 27(10): 1686-1692. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202010005.htm

    TANG F, ZHANG R Y, LIU S A. Airport ground service oriented multi-service coordination scheduling algorithm[J]. Control Engineering of China, 2020, 27(10): 1686-1692. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202010005.htm
    [11] LIU Y, WU J, TANG J, et al. Scheduling optimisation of multi-type special vehicles in an airport[J]. Transportmetrica B: Transport Dynamics, 2022, 10(1): 954-970. doi: 10.1080/21680566.2021.1983484
    [12] CHEN B, TANG K, YANG Y. Airport resource scheduling optimization based on planning time window[C]. 33th Chinese Control and Decision Conference(CCDC), Kunming, China: IEEE, 2021.
    [13] 高文倩. 基于数据挖掘的机场航班地面保障能力优化研究[D]. 济南: 山东大学, 2019.

    GAO W Q. Research on optimization of airport flights ground support ability based on date mining[D]. Jinan: Shandong University, 2019. (in Chinese)
    [14] ZHANG J, CHONG X, WEI Y, et al. Optimization of apron support vehicle operation scheduling based on multi-layer coding genetic algorithm[J]. Applied Sciences, 2022, 12(10): 5279. doi: 10.3390/app12105279
    [15] 吴枕. 大型机场地面保障车辆协同与动态调度研究[D]. 北京: 北京交通大学, 2021.

    WU Z. Research on collaborative and dynamic scheduling of ground support vehicles for large airports[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese)
    [16] 贾丽琦. 应用于机场保障的资源调度算法研究[D]. 西安: 西安科技大学, 2020.

    JIA L Q. Research on resource scheduling algorithms applied to airport support[D]. Xi'an: Xi'an University of Science and Technology, 2020. (in Chinese)
    [17] 唐云霄. 枢纽机场航班保障服务时间估计[D]. 天津: 中国民航大学, 2017.

    TANG Y X. The estimation about flight support service time of hub airport[D]. Tianjin: Civil Aviation University of China, 2017. (in Chinese)
    [18] EVLER J, ASADI E, PREIS H, et al. Airline ground operations: schedule recovery optimization approach with constrained resources[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103129. doi: 10.1016/j.trc.2021.103129
    [19] 中国民用航空局. 民用航空运输地面保障服务规范: MH/T 1036—2011[S]. 北京: 航空器适航审定司, 2011.

    Civil Aviation Administration of China. Civil aviation ground support service standards: MH/T 1036—2011[S]. Beijing: Aircraft Airworthiness Certification Division, 2011. (in Chinese)
    [20] 王立文, 李彪, 邢志伟, 等. 过站航班地面保障过程动态预测[J]. 北京航空航天大学学报, 2021, 47(6): 1095-1104. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202106002.htm

    WANG L W, LI B, XING Z W, et al. Dynamic prediction of ground support process for transit flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (6): 1095-1104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202106002.htm
    [21] 杨珏. 基于遗传算法的机场特种车辆调度应用研究[J]. 计算机技术与发展, 2019, 29(3): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201903035.htm

    YANG Y. Research on airport special vehicle scheduling based on genetic algorithm[J]. Computer Technology and Development, 2019, 29(3): 164-168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201903035.htm
    [22] PADRON S, GUIMARANS D, RAMOS J J, et al. A bi-objective approach for scheduling ground-handling vehicles in airports[J]. Computers & Operations Research, 2016, 71: 34-53.
    [23] MAHMOUDI M, ZHOU X. Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: a dynamic programming approach based on state-space-time network representations[J]. Transportation Research Part B: Methodological, 2016, 89: 19-42. doi: 10.1016/j.trb.2016.03.009
    [24] 程琳, 宁翊森, 宋茂灿. 拉格朗日松弛启发式算法求解时空网络下的弧路径问题[J]. 交通运输工程学报, 2022, 22 (4): 273-284. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202204021.htm

    CHENG L, NING Y S, SONG M C. Lagrangian relaxtion heuristic algorithm of arc routing problem under time-space network[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 273-284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202204021.htm
    [25] ZHAO P, HAN X, WAN D. Evaluation of the airport ferry vehicle scheduling based on network maximum flow model[J]. Omega, 2021, 99: 102178. doi: 10.1016/j.omega.2019.102178
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  205
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-16
  • 网络出版日期:  2024-04-03

目录

    /

    返回文章
    返回