留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型混合交通流场景下交叉口信号控制和轨迹控制协同优化方法

王方凯 杨晓光 江泽浩 刘聪健

王方凯, 杨晓光, 江泽浩, 刘聪健. 新型混合交通流场景下交叉口信号控制和轨迹控制协同优化方法[J]. 交通信息与安全, 2024, 42(1): 76-83. doi: 10.3963/j.jssn.1674-4861.2024.01.009
引用本文: 王方凯, 杨晓光, 江泽浩, 刘聪健. 新型混合交通流场景下交叉口信号控制和轨迹控制协同优化方法[J]. 交通信息与安全, 2024, 42(1): 76-83. doi: 10.3963/j.jssn.1674-4861.2024.01.009
WANG Fangkai, YANG Xiaoguang, JIANG Zehao, LIU Congjian. Joint Optimization of Intersection Signal Control and Trajectory Control in Novel Heterogenous Traffic Flow Scenarios[J]. Journal of Transport Information and Safety, 2024, 42(1): 76-83. doi: 10.3963/j.jssn.1674-4861.2024.01.009
Citation: WANG Fangkai, YANG Xiaoguang, JIANG Zehao, LIU Congjian. Joint Optimization of Intersection Signal Control and Trajectory Control in Novel Heterogenous Traffic Flow Scenarios[J]. Journal of Transport Information and Safety, 2024, 42(1): 76-83. doi: 10.3963/j.jssn.1674-4861.2024.01.009

新型混合交通流场景下交叉口信号控制和轨迹控制协同优化方法

doi: 10.3963/j.jssn.1674-4861.2024.01.009
基金项目: 

国家自然科学基金项目 52102377

国家自然科学基金项目 52072264

道路与交通工程教育部重点实验室(同济大学)开放基金项目 K202201

详细信息
    作者简介:

    王方凯(1982—),博士研究生. 研究方向:交通管理与控制. E-mail: fangkaiwang@tongji.edu.cn

    通讯作者:

    刘聪健(1997—),博士研究生. 研究方向:人机混驾交通系统优化设计. E-mail: liucongjian97@hust.edu.cn

  • 中图分类号: U491

Joint Optimization of Intersection Signal Control and Trajectory Control in Novel Heterogenous Traffic Flow Scenarios

  • 摘要: 针对人类驾驶车辆(human driven vehicle,HDV)和智能网联车辆(connected and autonomous vehicle,CAV)组成的新型混合交通流场景,现有的交叉口协同控制方法中,集中控制和单车控制分别对中央控制器的算力和车载计算单元的算力要求较高。本文研究了1种将元胞传输模型(cell transmission model,CTM)与双层规划模型相结合的协同优化方法,利用可调整的元胞长度平衡求解信号控制与CAV轨迹优化2个问题所需的算力,从而灵活地根据中央控制器和车载计算单元的算力分配计算资源;通过上层模型预测交通流状态并优化信号控制参数,引入动态调整元胞长度规则,降低中央控制器的计算负担;基于上层的交通状态预测结果,利用下层模型对CAV轨迹进行全局规划,进一步提升交叉口通行效率。同时,为了提升解的最优性和求解的实时性,采用结合随机梯度下降法和遗传算法的迭代优化算法,避免陷入局部最优的同时提升求解效率。最后以无锡市先锋中路与春风南路交叉口数据为例,验证了不同CAV渗透率下优化的效果,结果表明:①相较于基准方案,本文提出的协同优化方案最高可以降低交叉口8.09%的车均行程时间,降低了交叉口拥堵向上游的传播;②当CAV渗透率为30%、60%和90%时,优化比例为2.51%、5.08%和7.88%;③在进口道流量大于3 000 pcu/h时,仍能在100s内获得最优信号控制方案,可支持实时优化。该方法可以有效改善城市交通拥堵,提高新型混合交通流场景下交叉口的通行效率。

     

  • 图  1  研究场景

    Figure  1.  Research scenario

    图  2  交叉口元胞化方法

    Figure  2.  Intersection cellular method

    图  3  随机梯度下降法与遗传算法相结合求解流程图

    Figure  3.  Flow chart of stochastic gradient descent method combined with genetic algorithm

    图  4  案例交叉口与全息轨迹数据获取

    Figure  4.  Case intersection and holographic trajectory data acquisition

    图  5  改进CTM模拟实际交通流的效果

    Figure  5.  Effect of improved CTM to simulate actual traffic flow

    图  6  算法收敛效果

    Figure  6.  Effect of solution algorithm convergence

    图  7  平均运行速度

    Figure  7.  Average running speed

    图  8  时空轨迹图

    Figure  8.  Space-time trajectory diagram

    图  9  各策略对TTPFU的优化效果

    Figure  9.  Optimization effect of each strategy on TTPFU

    图  10  Optimization effect of each strategy on TTPFU

    Figure  10.  Comparison of algorithm solving time

    表  1  仿真参数设定

    Table  1.   Simulation parameter Settings

    参数 取值
    元胞长度/m 20
    左转进口道的通行能力/(pcu/h) 1 200
    直行进口道的通行能力/(pcu/h) 1 400
    阻塞密度/(pcu/km) 200
    CAV间的饱和车头时距/s 1.5
    HV间的饱和车头时距/s 2.5
    车辆通过交叉口的速度上限/(m/s) 10
    加速度上限/(m/s2 2
    加速度下限/(m/s2 -4
    下载: 导出CSV
  • [1] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI K Q, DAI Y F, LI S B, et al. Current status and trends of intelligent connected vehicle(ICV)technology[J]. Journal of Automobile Safety and Energy, 2017, 8(1): 1-14. (in Chinese) doi: 10.3969/j.issn.1674-8484.2017.01.001
    [2] 赵祥模, 马万经, 俞春辉, 等. 道路交通控制系统发展与趋势展望[J]. 前瞻科技, 2023, 2(3): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-QZKJ202303005.htm

    ZHAO X M, MA W J, YU C H, et al. Development and trend outlook of road traffic control systems[J]. Frontiers of Technology, 2023, 2(3): 58-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QZKJ202303005.htm
    [3] 高金勇, 罗晟, 王歆远, 等. 面向网联自动驾驶混合交通流的高速公路流量控制方法[J]. 交通信息与安全, 2023, 41(5): 74-82 doi: 10.3963/j.jssn.1674-4861.2023.05.008

    GAO J Y, LUO S, WANG X Y, et al. A control method for mixed traffic flows with CAVs and HDVs on freeways[J]. Journal of Transport Information and Safety, 2023, 41(5): 74-82. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.008
    [4] LI J, YU C, SHEN Z, et al. A survey on urban traffic control under mixed traffic environment with connected automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2023, 154: 104258. doi: 10.1016/j.trc.2023.104258
    [5] 彭显玥, 王昊. 交通分配与信号控制组合优化研究综述[J]. 交通运输工程与信息学报, 2023, 21(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202301001.htm

    PENG X Y, WANG H. Review of combined optimization research on traffic allocation and signal control[J]. Journal of Traffic and Transportation Engineering and Information, 2023, 21(1): 1-18(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202301001.htm
    [6] 殷亚峰, 陆化普. 动态网络交通信号配时模型研究[J]. 公路交通科技, 1997, 14(3): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK703.002.htm

    YIN Y F, LU H P. Study on dynamic network traffic signal timing model[J]. Journal of Highway and Transportation Research and Development, 1997, 14(3): 11-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK703.002.htm
    [7] 段力, 刘聪健, 方炽霖, 等. 信号控制与交通分配协同模型的自适应IOA算法[J]. 交通运输系统工程与信息, 2019, 19(6): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201906012.htm

    DUAN L, LIU C J, FANG C L, et al. Adaptive IOA algorithm for signal control and traffic distribution coordination model[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(6): 77-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201906012.htm
    [8] 马万经, 李金珏, 俞春辉. 智能网联混合交通流交叉口控制: 研究进展与前沿[J]. 中国公路学报, 2023, 36(2): 22-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202302002.htm

    MA W J, LI J J, YU C H. Intelligent connected mixed traffic flow intersection control: research progress and frontier[J]. China Journal of Highway and Transport, 2023, 36(2): 22-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202302002.htm
    [9] CHEN C, WANG J, XU Q, et al. Mixed platoon control of automated and human-driven vehicles at a signalized intersection: dynamical analysis and optimal control[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103138.
    [10] 冯红艳, 康雷雷, 刘澜. 智能网联环境下单交叉口车辆轨迹优化[J]. 交通运输工程与信息学报, 2024, 22(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202401002.htm

    FENG H Y, KANG L L, LIU L. Trajectory optimization of vehicles at isolated intersection in a connected and automated environment[J]. Journal of Transportation Engineering and Information, 2024, 22(1): 25-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202401002.htm
    [11] 陈志军, 张晶明, 熊盛光, 等. 智能网联车辆生态驾驶研究现状及展望[J]. 交通信息与安全, 2022, 40(4): 13-25. doi: 10.3963/j.jssn.1674-4861.2022.04.002

    CHEN Z J, ZHANG J M, XIONG S G, et al. A review on research status and trends of eco-driving on intelligent connected vehicles [J]. Journal of Transport Information and Safety, 2022, 40(4): 13-25. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.002
    [12] MA C, YU C, YANG X. Trajectory planning for connected and automated vehicles at isolated signalized intersections under mixed traffic environment[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 103309.
    [13] 王润民, 张心睿, 赵祥模, 等. 混行环境下网联信号交叉口车路协同控制方法[J]. 交通运输工程学报, 2022, 22(3): 139-151. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202203011.htm

    WANG R M, ZHANG X R, ZHAO X M, et al. Cooperative control method for vehicle-road coordination at connected signalized intersections in mixed traffic environments[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 139-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202203011.htm
    [14] 孙伟, 张梦雅, 马成元, 等. 新型混合交通交叉口信号与车辆轨迹协同控制方法[J]. 交通运输系统工程与信息, 2023, 23(1): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202301011.htm

    SUN W, ZHANG M Y, MA C Y, et al. New method of signal and vehicle trajectory coordination control at mixed traffic intersections[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 97-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202301011.htm
    [15] LEVIN M W, BOYLES S D. A multiclass cell transmission model for shared human and autonomous vehicle roads[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 103-116.
    [16] 吕彪, 谢智宇, 康宇翔, 等. 基于动态分流元胞传输模型的城市道路网络韧性评估[J]. 交通运输系统工程与信息, 2022, 22(6): 134-143, 211. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202206014.htm

    LYU B, XIE Z Y, KANG Y X, et al. Urban road network resilience assessment based on dynamic diversion cell transmission model[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 134-143, 211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202206014.htm
    [17] BIRDSALL M S. Traffic signal timing manual provides comprehensive resource for signal practices with far-reaching benefits[J]. ITE Journal, 2009, 79(4): 44-45.
    [18] JIANG R, WU Q, ZHU Z. Full velocity difference model for a car-following theory[J]. Physical Review E, 2001, 64(1): 17101.
    [19] TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163.
    [20] MOHAJERPOOR R, RAMEZANI M. Mixed flow of autonomous and human-driven vehicles: Analytical headway modeling and optimal lane management[J]. Transportation Research Part C: Emerging Technologies, 2019, 109: 194-210.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  100
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 网络出版日期:  2024-05-31

目录

    /

    返回文章
    返回