留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市多模式交通网络韧性评估研究综述

张洁斐 任刚 唐磊 杜建玮 顾厚煜 宋建华

张洁斐, 任刚, 唐磊, 杜建玮, 顾厚煜, 宋建华. 城市多模式交通网络韧性评估研究综述[J]. 交通信息与安全, 2024, 42(3): 102-113. doi: 10.3963/j.jssn.1674-4861.2024.03.011
引用本文: 张洁斐, 任刚, 唐磊, 杜建玮, 顾厚煜, 宋建华. 城市多模式交通网络韧性评估研究综述[J]. 交通信息与安全, 2024, 42(3): 102-113. doi: 10.3963/j.jssn.1674-4861.2024.03.011
ZHANG Jiefei, REN Gang, TANG Lei, DU Jianwei, GU Houyu, SONG Jianhua. A Review about Resilience Evaluation for Urban Multimodal Transportation Networks[J]. Journal of Transport Information and Safety, 2024, 42(3): 102-113. doi: 10.3963/j.jssn.1674-4861.2024.03.011
Citation: ZHANG Jiefei, REN Gang, TANG Lei, DU Jianwei, GU Houyu, SONG Jianhua. A Review about Resilience Evaluation for Urban Multimodal Transportation Networks[J]. Journal of Transport Information and Safety, 2024, 42(3): 102-113. doi: 10.3963/j.jssn.1674-4861.2024.03.011

城市多模式交通网络韧性评估研究综述

doi: 10.3963/j.jssn.1674-4861.2024.03.011
基金项目: 

安徽省高校自然科学重点科研项目 2023AH051218

国家自然科学基金项目 52072068

安徽理工大学高层次引进人才科研启动基金项目 2023yjrc20

详细信息
    作者简介:

    张洁斐(1991—),博士,讲师. 研究方向:韧性交通评估与优化. E-mail: 617098059@qq.com

    通讯作者:

    任刚(1976—),博士,教授. 研究方向:应急交通组织、交通仿真、韧性交通分析等. E-mail: rengang@seu.edu.cn

  • 中图分类号: U268.6

A Review about Resilience Evaluation for Urban Multimodal Transportation Networks

  • 摘要: 为促进交通韧性研究的发展,聚焦于城市多模式交通网络,对国内外韧性评估领域的相关文献进行总结。阐述了“韧性”的定义与内涵;梳理了基于网络拓扑、基于供需特性、考虑耦合关系的韧性评估指标体系;总结了模型驱动和数据驱动2类韧性评估方法的成果与优劣;探讨了网络设计、应急疏散、网络修复层面的交通网络韧性提升措施,并归纳了韧性优化的模型和算法;最后总结了现有研究不足和未来发展方向。研究结果表明:①复合网络的韧性评估未能充分考虑网络的耦合特性,韧性评估对可变的交通需求和乘客出行行为的刻画不精确;②模型驱动的韧性评估在指标权重的确定上更多依赖主观性;数据驱动的韧性评估重在数据的分析与结果展示,缺乏韧性演变规律与趋势的深度解析;③旨在提升韧性的优化模型在多目标决策、大型网络中的计算效率、真实场景的还原等方面还有待改进。未来研究的建议和展望如下:①在网络的构建、指标的获取上充分考虑复合网络的相依特性,在评估模型的构建上科学反映各系统间的耦合特性;②协同多部门建立完备共享的数据库,探索数据与模型双驱动的网络韧性评估方法,设计高效算法以支持韧性指数的快速精确计算;③将静态离散的韧性评估转化为动态连续的韧性监测,进而分析网络韧性时空演化规律与趋势,探究交通网络韧性演化机理;④精细化的网络韧性决策优化应在数据的分析和模型的构建上加强对真实事件场景的还原,并进一步探索AI智能算法在大型网络优化中的应用。

     

  • 图  1  2006—2021年多模式交通韧性评估载文量分布图

    Figure  1.  Distribution of research papers of multimodal transportation resilience evaluation from 2006-2021

    图  2  WOS关键词共现图谱分析

    Figure  2.  WOS keywords co-occurrence pattern analyze

    图  3  韧性视角下交通网络性能变化示意图

    Figure  3.  Performance change of transportation network in resilience perspective

    图  4  网络拓扑指标频次图

    Figure  4.  Distribution of network topological indicators

    图  5  网络供需特性指标频次图

    Figure  5.  Distribution of network supply-demand indicators

    图  6  交通网络性能改变图(忽略扰动降级和扰动后的稳态)

    Figure  6.  Performance change of transportation network(Ignoring disturbance degradation and steady state after disturbance)

    表  1  韧性评估数据输入

    Table  1.   Resilience evaluation data input

    对象 数据输入
    基于网络拓扑的韧性评估 ①网络结构:有向图、无向图;将社会、经济、人口数据、最短路径长度等作为节点或路段的权重
    ②外部数据:人口、社会、经济数据、地理空间、气象数据等
    基于供需特性的韧性评估 ①网络结构: 有向加权图
    ②路段属性:通行能力、长度、自由流下的速度及时间
    ③节点属性:节点容量
    ④固定或可变的OD需求矩阵
    ⑤网络实际的运行状态:被满足的OD需求总量、各路段的流量、速度、延误等
    ⑥出行成本:出行时间、票价等
    ⑦外部数据:人口、社会、经济数据、地理空间、气象数据等
    考虑耦合关系的韧性评估 ①交通网络特性:网络供需特性的部分指标
    ②其他特性:响应时间、恢复时间、修复资源充足性等
    ③外部数据:人口、社会、经济数据、地理空间、气象数据等
    下载: 导出CSV

    表  2  韧性优化模型与算法

    Table  2.   Resilience optimization model and algorithm

    层面 韧性指数形式 优化目标所选取的性能参数 算法
    网络设计 离散型 可替代的不相关路径最大化[11]、出行时间最小化[11] NSGA-II算法[11]
    应急疏散 离散型 出行成本[52]、资源利用率[53]、被满足的出行需求[53] 禁忌搜素算法[52]、NSGA-II算法[53]
    离散型 出行时间与路段流量乘积之和[45] 整数L-shaped分解算法[45]
    网络修复 积分型 网络效率[4]、网络可达性[54] 枚举法[4]、Lingo软件[54]
    组合型 平均速度[39]、可替代的不相关路径[55]、OD需求满足率[35, 56]、恢复速度[35, 56-57]、出行时间[57] GA算法[35, 55-56]、NSGA-II[39]、禁忌搜索算法[57]
    下载: 导出CSV
  • [1] GU Y, FU X, LIU Z, et al. Performance of transportation network under perturbations: reliability, vulnerability, and resilience[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 133: 101809. doi: 10.1016/j.tre.2019.11.003
    [2] MURRAY-TUITE P. A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions[C]. IEEE 2006 Winter Simulation Conference, Monterey, USA: IEEE, 2006.
    [3] 杨金顺, 孙洪运, 李林波, 等. 道路交通系统恢复力研究进展综述[J]. 交通信息与安全, 2014, 32(3): 87-93. doi: 10.3963/j.issn.1674-4861.2014.03.018

    YANG J S, SUN H Y, LI L B, et al. Review of road transportation system resilience research[J]. Journal of Transport Information and Safety, 2014, 32(3): 87-93. (in Chinese) doi: 10.3963/j.issn.1674-4861.2014.03.018
    [4] 张洁斐, 任刚, 马景峰, 等. 基于韧性评估的地铁网络修复时序决策方法[J]. 交通运输系统工程与信息, 2020, 20(4): 14-20.

    ZHANG J F, REN G, MA J F, et al. Decision-making method of repair sequence for metro network based on resilience evaluation[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 14-20. (in Chinese)
    [5] ZHOU Y M, WANG J W, YANG H. Resilience of transportation systems: concepts and comprehensive review[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (12): 4262-4276. doi: 10.1109/TITS.2018.2883766
    [6] WOODS D. Four concepts for resilience and the implications for the future of resilience engineering[J]. Reliability Engineering and System Safety, 2015, 141: 5-9. doi: 10.1016/j.ress.2015.03.018
    [7] MATTSSON L, JENELIUS E. Vulnerability and resilience of transport systems: a discussion of recent research[J]. Transportation Research Part A: Policy and Practice, 2015, 81: 16-34. doi: 10.1016/j.tra.2015.06.002
    [8] SOLTANI-SOBH A, HEASLIP K, KHOURY J E. Estimation of road network reliability on resiliency: an uncertain based model[J]. International Journal of Disaster Risk Reduction, 2015, 14: 536-544. doi: 10.1016/j.ijdrr.2015.10.005
    [9] ZHANG D M, DU F, HUANG H W, et al. Resiliency assessment of urban rail transit networks: Shanghai metro as an example[J]. Safety Science, 2018, 106: 230-243. doi: 10.1016/j.ssci.2018.03.023
    [10] IP W H, WANG D W. Resilience evaluation approach of transportation networks[C]. International Joint Conference on Computational Sciences and Optimization, Wuhan, China: Wuhan University, 2009.
    [11] ZHANG W L, WANG N Y. Resilience-based risk mitigation for road networks[J]. Structural Safety, 2016, 62: 57-65. doi: 10.1016/j.strusafe.2016.06.003
    [12] DONOVAN B, WORK D B. Empirically quantifying city-scale transportation system resilience to extreme events[J]. Transportation Research Part C: Emerging Technologies, 2017, 79: 333-346. doi: 10.1016/j.trc.2017.03.002
    [13] CHEN J Q, LIU J, PENG Q Y, et al. Resilience assessment of an urban rail transit network: a case study of Chengdu subway[J]. Physica A: Statistical Mechanics and its Applications, 2022, 586: 126517. doi: 10.1016/j.physa.2021.126517
    [14] ZHAO T T, ZHANG Y. Transportation infrastructure restoration optimization considering mobility and accessibility in resilience measures[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102700. doi: 10.1016/j.trc.2020.102700
    [15] ZHU C L, WU J P, LIU M Y, et al. Cyber-physical resilience modelling and assessment of urban roadway system interrupted by rainfall[J]. Reliability Engineering & System Safety, 2020, 204: 107095.
    [16] 马壮林, 程会媛, 邵逸恒, 等. 大客流干扰下多层公交-地铁网络的韧性评估[J]. 中国公路学报, 2024, 37(6): 256-278.

    MA Z L, CHENG H Y, SHAO Y H, et al. Resilience assessment of multilayer bus-metro network under large passenger flow interference[J]. China Journal of Highway and Transport, 2024, 37(6): 256-278. (in Chinese)
    [17] NOGAL M, O'CONNOR A, MARTINEZ- PASTOR B, et al. Novel probabilistic resilience assessment framework of transportation networks against extreme weather events[J]. Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2017, 3(3): 04017004.
    [18] GAUTHIER P, FURNO A, EL F N E. Road network resilience: how to identify critical links subject to day-to-day disruptions[J]. Transportation Research Record, 2018, 2672(1): 54-65. doi: 10.1177/0361198118792115
    [19] ZHANG X G, MAHADEVAN S, SANKARARAMAN S, et al. Resilience-based network design under uncertainty[J]. Reliability Engineering & System Safety, 2018, 169: 364-379.
    [20] KOC E, CETINER B, ROSE A, et al. Craft: comprehensive resilience assessment framework for transportation systems in urban areas[J]. Advanced Engineering Informatics, 2020, 46: 101159. doi: 10.1016/j.aei.2020.101159
    [21] ZHU Y, XIE K, OZBAY K, et al. Data-driven spatial modeling for quantifying network wide resilience in the aftermath of hurricanes Irene and Sandy[J]. Transportation Research Record, 2017, 2604: 9-18. doi: 10.3141/2604-02
    [22] MUDIGONDA S, OZBAY K, BARTIN B. Evaluating the resilience and recovery of public transit system using big data: case study from New Jersey[J]. Journal of Transportation Safety and Security, 2019, 11(5): 491-519. doi: 10.1080/19439962.2018.1436105
    [23] 马飞, 苟慧艳, 杨梦楠, 等. 考虑灰色攻击的多制式区域轨道交通网络韧性评估[J]. 中国安全科学学报, 2023, 33(12): 148-159.

    MA F, GOU H Y, YANG M N, et al. Resilience assessment of multi-modal regional rail transit networks considering grey attack[J]. China Safety Science Journal, 2023, 33(12): 148-159. (in Chinese)
    [24] QI X Y, MEI G, PICCIALLI F. Resilience evaluation of urban bus-subway traffic networks for potential applications in IOT-based smart transportation[J]. IEEE Sensors Journal, 2021, 21(22): 25061-25074. doi: 10.1109/JSEN.2020.3046270
    [25] LIU Z Z, CHEN H, LIU E, et al. Evaluating the dynamic resilience of the multi-mode public transit network for sustainable transport[J]. Journal of Cleaner Production, 2022, 348: 131350. doi: 10.1016/j.jclepro.2022.131350
    [26] VODOPIVEC N, MILLER-HOOKS E. Transit system resilience: quantifying the impacts of disruptions on diverse populations[J]. Reliability Engineering and System Safety, 2019, 191: 106561. doi: 10.1016/j.ress.2019.106561
    [27] TANG J Q, HEINIMANN H, HAN K, et al. Evaluating resilience in urban transportation systems for sustainability: a systems-based Bayesian network model[J]. Transportation Research Part C: Emerging Technologies, 2020, 121: 102840. doi: 10.1016/j.trc.2020.102840
    [28] SAADAT Y, AYYUB B M, ZHANG Y J, et al. Resilience of metro rail networks: quantification with Washington, D.C. as a case study[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical Engineering, 2019, 5(4): 041011. doi: 10.1115/1.4044038
    [29] SAADAT Y, AYYUB B M, ZHANG Y J, et al Resilience-based strategies for topology enhancement and recovery of metrorail transit networks[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part A: Civil Engineering, 2020, 6(2): 04020017. doi: 10.1061/AJRUA6.0001057
    [30] ZHU Y, OZBAY K, XIE K, et al. Using big data to study resilience of taxi and subway trips for hurricanes Sandy and Irene[J]. Transportation Research Record, 2016, 2599: 70-80. doi: 10.3141/2599-09
    [31] WANG H W, PENG Z R, WANG D S, et al. Evaluation and prediction of transportation resilience under extreme weather events: a diffusion graph convolutional approach[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102619. doi: 10.1016/j.trc.2020.102619
    [32] ZHANG M, LIU Y F, XIAO Y X, et al. Vulnerability and resilience of urban traffic to precipitation in China[J]. International Journal of Environmental Research and Public Health, 2021, 18(23): 12342. doi: 10.3390/ijerph182312342
    [33] DAS R. Approach for measuring transportation network resiliency: a case study on Dhaka, Bangladesh[J]. Case Studies on Transport Policy, 2020, 8(2): 586-592. doi: 10.1016/j.cstp.2020.04.001
    [34] MILLER-HOOKS E, ZHANG X D, FATURECHI R. Measuring and maximizing resilience of freight transportation networks[J]. Computers and Operations Research, 2012, 39(7): 1633-1643. doi: 10.1016/j.cor.2011.09.017
    [35] LI Z L, JIN C, HU P, et al. Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty[J]. Reliability Engineering & System Safety, 2019, 118: 503-514.
    [36] 吕彪, 高自强, 管心怡, 等. 基于日变交通配流的城市道路网络韧性评估[J]. 西南交通大学学报, 2020, 55(6): 1181-1190

    LYU B, GAO Z Q, GUAN X Y, et al. Resilience assessment of urban road network based on day-to-day traffic assignment[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1181 -1190. (in Chinese)
    [37] 吕彪, 高自强, 刘一骝. 道路交通系统韧性及路段重要度评估[J]. 交通运输系统工程与信息, 2020, 20(2): 114-121

    LYU B, GAO Z Q, LIU Y Y. Evaluation of road transportation system resilience and link importance[J]. Journal of Transportation System Engineering and Information Technology, 2020, 20(2): 114-121. (in Chinese)
    [38] 吕彪, 谢智宇, 康宇翔, 等. 基于动态分流元胞传输模型的城市道路网络韧性评估[J]. 交通运输系统工程与信息, 2022, 22(6): 134-143, 211.

    LYU B, XIE Z Y, KANG Y X, et al. Resilience assessment of urban road network based on day-to-day traffic assignment[J]. Journal of Transportation System Engineering and Information Technology, 2022, 22(6): 134-143, 211. (in Chinese)
    [39] LIU K Z, ZHAI C H, DONG Y. Optimal restoration schedules of transportation network considering resilience[J]. Structure and Infrastructure Engineering, 2020, 17(8): 1141-1154.
    [40] XU Z Z, CHOPRA S S, LEE H. Resilient urban public transportation infrastructure: a comparison of five flow-weighted metro networks in terms of the resilience cycle framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12688-12699. doi: 10.1109/TITS.2021.3116667
    [41] WEI M, FANG S J, CHEN S, et al. Resilience assessment of road networks in the extremely severe disaster areas of the Wenchuan earthquake[J]. Frontiers in Earth Science, 2022, 10: 834302. doi: 10.3389/feart.2022.834302
    [42] 吕彪, 管心怡, 高自强. 地铁网络服务韧性评估与最优恢复策略[J]. 交通运输系统工程与信息, 2021, 21(5): 198-221

    LYU B, GUAN X Y, GAO Z Q. Evaluation and optimal recovery strategy of metro network service resilience[J]. Journal of Transportation System Engineering and Information Technology, 2021, 21(5): 198-221. (in Chinese)
    [43] TANG YC, BI W, VARGA L, et al. An integrated framework for managing fire resilience of metro station system: identification, assessment, and optimization[J]. International Journal of Disaster Risk Reduction, 2022, 77: 103037. doi: 10.1016/j.ijdrr.2022.103037
    [44] CHEN H R, ZHOU R Y, CHEN H, et al. Static and dynamic resilience assessment for sustainable urban transportation systems: a case study of Xi'an, China[J]. Journal of Cleaner Production, 2022, 368: 133237. doi: 10.1016/j.jclepro.2022.133237
    [45] ZHANG X, MILLER-HOOKS E, DENNY K. Assessing the role of network topology in transportation network resilience[J]. Journal of Transport Geography, 2015, 46: 35-45. doi: 10.1016/j.jtrangeo.2015.05.006
    [46] ZHANG Z, WOLSHON B, MURRAY- TUITE P. A conceptual framework for illustrating and assessing risk, resilience, and investment in evacuation transportation systems[J]. Transportation Research Part D: Transport and Environment, 2019, 77: 525-534. doi: 10.1016/j.trd.2019.08.016
    [47] WANG Y, WANG J W. Measuring and maximizing resilience of transportation systems for emergency evacuation[J]. IEEE Transactions on Engineering Management, 2020, 67(3): 603-613. doi: 10.1109/TEM.2019.2949098
    [48] MARZUOLI A, BOIDOT E, COLOMAR P, et al. Improving disruption management with multimodal collaborative decision-making: a case study of the Asiana crash and lessons learned[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2699-2717. doi: 10.1109/TITS.2016.2536733
    [49] 张雯婕, 胡军红, 闻成维, 等. 考虑网络韧性的城市轨道交通故障恢复研究[J]. 中国安全科学学报, 2023, 33(4): 179-186.

    ZHANG W J, HU J H, WEN C W, et al. Research on urban rail failure recovery considering network resilience[J]. China Safety Science Journal, 2023, 33(4): 179-186. (in Chinese)
    [50] 路庆昌, 刘鹏, 徐标, 等. 运营事件下基于韧性的地铁网络保护决策优化[J]. 交通运输工程学报, 2023, 23(3): 209-220.

    LU Q C, LIU P, XU B, et al. Resilience-based protection decision optimization for metro network under operational incidents[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 209-220. (in Chinese)
    [51] 程静, 卢群, 吴同政, 等. 地铁网络级联失效恢复策略韧性评估方法[J]. 交通信息与安全, 2023, 41(4): 173-184. doi: 10.3963/j.jssn.1674-4861.2023.04.018

    CHENG J, LU Q, WU T Z, et al. A method for evaluating recovery strategies for cascade failures of metro networks[J]. Journal of Transport Information and Safety, 2023, 41(4): 173-184. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.04.018
    [52] ZHANG N, ALIPOUR A, CORONEL L. Application of novel recovery techniques to enhance the resilience of transportation networks[J]. Transportation Research Record, 2018, 2672(1): 138-147. doi: 10.1177/0361198118797510
    [53] GUO J N, DU Q, HE Z G, et al. A method to improve the resilience of multimodal transport network: location selection strategy of emergency rescue facilities[J]. Computers & Industrial Engineering, 2021, 161: 107678.
    [54] LIAO T Y, HU T Y, KO Y N. A Resilience optimization model for transportation networks under disasters[J]. Natural Hazards, 2018, 93(1): 469-489. doi: 10.1007/s11069-018-3310-3
    [55] SOMY S, SHAFAEI R, RAMEZANIAN R. Resilience-based mathematical model to restore disrupted road-bridge transportation networks[J]. Structure and Infrastructure Engineering, 2022, 18(9): 1334-1349. doi: 10.1080/15732479.2021.1906711
    [56] 李兆隆, 金淳, 胡畔, 等. 基于弹复性的交通网络应急恢复阶段策略优化[J]. 系统工程理论与实践, 2019, 39(11): 2828-2841 doi: 10.12011/1000-6788-2018-0729-14

    LI Z L, JIN C, HU P, et al. Resilience-based recovery strategy optimization in emergency recovery phase for transportation networks[J]. Systems Engineering Theory & Practice, 2019, 39(11): 2828-2841. (in Chinese) doi: 10.12011/1000-6788-2018-0729-14
    [57] MAO X H, ZHOU J B, YUAN C W, et al. Resilience-based optimization of post disaster restoration strategy for road networks[J]. Journal of Advanced Transportation, 2021, 2021 (8): 1-15.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  65
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 网络出版日期:  2024-10-21

目录

    /

    返回文章
    返回