Citation: | ZHU Man, WEN Yuanqiao, SUN Wuqiang, ZHANG Jiahui, HAHN Axel. A Review of Parameter Identification Methods for Ship Dynamic Models[J]. Journal of Transport Information and Safety, 2022, 40(5): 1-11. doi: 10.3963/j.jssn.1674-4861.2022.05.001 |
[1] |
KOSOWATZ J. Sailing toward autonomy[J]. Mechanical Engineering, 2019, 141(9): 30-35. doi: 10.1115/1.2019-SEP1
|
[2] |
吴青, 王乐, 刘佳仑. 自主水面货船研究现状与展望[J]. 智能系统学报, 2019, 14(1): 57-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201901005.htm
WU Q, WANG L, LIU J L. Research status and prospects of autonomous surface cargo ships[J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 57-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201901005.htm
|
[3] |
周翔宇, 吴兆麟, 王凤武, 等. 自主船舶的定义及其自主水平的界定[J]. 交通运输工程学报, 2019, 19(6): 149-162. doi: 10.19818/j.cnki.1671-1637.2019.06.014
ZHOU X Y, WU Z L, WANG F W, et al. Definition of autonomous ship and its autonomy level[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 149-162. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.06.014
|
[4] |
张笛, 赵银祥, 崔一帆, 等. 智能船舶的研究现状可视化分析与发展趋势[J]. 交通信息与安全, 2021, 39(1): 7-16+34.
ZHANG D, ZHAO Y X, CUI Y F, et al. A visualization analysis and development trend of intelligent ship studies[J]. 2021, 39(1): 7-16+34. (in Chinese)
|
[5] |
王雪刚. 基于支持向量机的四自由度船舶操纵运动建模研究[D]. 上海: 上海交通大学, 2014.
WANG X G. On the modeling of ship manoeuvring motion in 4 degree of freedom based on support vector machines[D]. Shanghai: Shanghai Jiaotong University, 2014. (in Chinese)
|
[6] |
ZHU M, HAHN A, WEN Y Q, et al. Optimized support vector regression algorithm-based modeling of ship dynamics[J]. Applied Ocean Research, 2019(90): 101842.
|
[7] |
王辉, 任俊生, 刘新召. 基于OpenMP的船舶操纵运动局部加权学习辨识建模[J]. 计算机应用研究, 2020, 37(增刊2): 173-175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ2020S2054.htm
WANG H, REN J S, LIU X Z. OpenMP-based local weighted learning identification modeling of ship maneuvering motion[J]. Application Research of Computers, 2020, 37(S2): 173-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ2020S2054.htm
|
[8] |
LJUNG L. System identification[M]. Boston: Birkhäuser, 1998.
|
[9] |
WANG Z, SOARES CARLOS G, ZOU Z. Optimal design of excitation signal for identification of nonlinear ship manoeuvring model[J]. Ocean Engineering, 2019(196): 106778.
|
[10] |
郑宇昕. 最优输入设计方法及其在飞行器参数辨识中的应用[D]. 长沙: 国防科技大学, 2018.
ZHENG X Y. Optimal input design method and aircraft parameter identification[D]. Changsha: National University of Defense Technology, 2018. (in Chinese)
|
[11] |
LEVIN M J. Optimal estimation of impulse response in the presence of noise[J]. IRE Transactions on Circuit Theory, 1960(7): 50-56.
|
[12] |
XU H, HINOSTROZA M A, SOARES CARLOS G. Estimation of hydrodynamic coefficients of a nonlinear manoeuvring mathematical model with free-running ship model tests[J]. International Journal of Maritime Engineering, 2018(160): 213-225.
|
[13] |
ZHU M, SUN W Q, HAHN A, et al. Adaptive modeling of maritime autonomous surface ships with uncertainty using a weighted LS-SVR robust to outliers[J]. Ocean Engineering, 2020(200): 107053.
|
[14] |
PERERA L P, OLIVEIRA P, SOARES CARLOS G. System identification of vessel steering with unstructured uncertainties by persistent excitation maneuvers[J]. IEEE Journal of Oceanic Engineering, 2015, 41(3): 515-528.
|
[15] |
HERRERO E R, GONZALEZ F J V. Two-step identification of non-linear manoeuvring models of marine vessels[J]. Ocean Engineering, 2012(53): 72-82.
|
[16] |
WANG Z, ZOU Z, SOARES CARLOS G. Identification of ship manoeuvring motion based on nu-support vector machine[J]. Ocean Engineering, 2019(183): 270-281.
|
[17] |
YOON H K, RHEE K P. Identification of hydrodynamic coefficients in ship maneuvering equations of motion by estimation-before-modeling technique[J]. Ocean Engineering, 2003, 30(18): 2379-2404. doi: 10.1016/S0029-8018(03)00106-9
|
[18] |
YEON S M, YEO D J, RHEE K P. Optimal input design for the identification of low-speed manoeuvring mathematical model[C]. International Conference on Marine Simulation and Ship Maneuverability(MARSIM2006), Terschelling, The Netherlands: MIWB, 2006.
|
[19] |
SUTULO S, SOARES CARLOS G. Development of a multifactor regression model of ship maneuvering forces based on optimized captive-model tests[J]. Journal of Ship Research, 2006, 50(4): 311-333. doi: 10.5957/jsr.2006.50.4.311
|
[20] |
LEWIS E V. Principles of naval architecture second revision[J]. Jersey: SNAME, 1988(2): 152-157.
|
[21] |
YASUKAWA H, YOSHIMURA Y. Introduction of MMG standard method for ship maneuvering predictions[J]. Journal of Marine Science and Technology, 2015, 20(1): 37-52. doi: 10.1007/s00773-014-0293-y
|
[22] |
FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. Manhattan: John Wiley & Sons, 2011.
|
[23] |
TZENG C Y, CHEN J F. Fundamental properties of linear ship steering dynamic models[J]. Journal of Marine Science and Technology, 1999, 7(2): 79-88.
|
[24] |
LIU J, HEKKENBERG R, QUADVLIEG F, et al. An integrated empirical manoeuvring model for inland vessels[J]. Ocean Engineering, 2017(137): 287-308.
|
[25] |
SUTULO S, SOARES CARLOS G. On the application of empiric methods for prediction of ship manoeuvring properties and associated uncertainties[J]. Ocean Engineering, 2019(186): 106111.
|
[26] |
XU H, SOARES CARLOS G. Hydrodynamic coefficient estimation for ship manoeuvring in shallow water using an optimal truncated LS-SVM[J]. Ocean Engineering, 2019(191): 106488.
|
[27] |
DU P, OUAHSINE A, SERGENT P. Influences of the separation distance, ship speed and channel dimension on ship maneuverability in a confined waterway[J]. Comptes Rendus Mécanique, 2018, 346(5): 390-401. doi: 10.1016/j.crme.2018.01.005
|
[28] |
TANG X, TONG S, HUANG G, et al. Numerical investigation of the maneuverability of ships advancing in the non-uniform flow and shallow water areas[J]. Ocean Engineering, 2020(195): 106679.
|
[29] |
刘晗. 船舶近岸壁航行操纵性水动力与运动稳定性研究[D]. 上海: 上海交通大学, 2017.
LIU H. Manoeuvring hydrodynamics and stability of vessels navigating in proximity to the bank[D]. Shanghai: Shanghai Jiaotong University, 2017. (in Chinese)
|
[30] |
FALTINSEN O M. Hydrodynamics of high-speed marine vehicles[M]. Cambridge, UK: Cambridge University Press, 2005.
|
[31] |
ZHU M. Optimized support vector regression algorithm-based modeling of ship dynamic[D]. Oldenburg: Oldenburg University, 2019.
|
[32] |
MIYAUCHI Y, MAKI A, UMEDA N, et al. System parameter exploration of ship maneuvering model for automatic docking/berthing using CMA-ES[J]. Journal of Marine Science and Technology, 2022, 27(2): 1065-1083. doi: 10.1007/s00773-022-00889-3
|
[33] |
张心光. 基于船舶操纵性试验分析的辨识建模研究[D]. 上海: 上海交通大学, 2012.
ZHANG X G. Identification modeling based on analysis of ship manoeuvring tests[D]. Shanghai: Shanghai Jiaotong University, 2012. (in Chinese)
|
[34] |
CHEN C, RUIZ M T, DELEFORTRIE G, et al. Parameter estimation for a ship's roll response model in shallow water using an intelligent machine learning method[J]. Ocean Engineering, 2019(191): 106479.
|
[35] |
SUN L P, SUN W B. Parameter identification of the non-linear rolling damping based on PLS regression technique[J]. Advanced Materials Research, 2013(779/780): 675-679.
|
[36] |
谢朔, 初秀民, 柳晨光, 等. 基于多新息最小二乘法的船舶操纵响应模型参数辨识[J]. 中国航海, 2017, 40(1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201701016.htm
XIE S, CHU X M, LIU C G, et al. Parameter identification of ship maneuvering response model based on multi-innovation least squares algorithm[J]. Navigation of China, 2017, 40(1): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201701016.htm
|
[37] |
SONG C, ZHANG X, ZHANG G. Nonlinear identification for 4-DOF ship maneuvering modeling via full-scale trial data[J]. IEEE Transactions on Industrial Electronics, 2021, 69(2): 1829-1835.
|
[38] |
ZHANG G, ZHANG X, PANG H. Multi-innovation auto-constructed least squares identification for 4 DOF ship manoeuvring modelling with full-scale trial data[J]. ISA Transactions, 2015(58): 186-195.
|
[39] |
HAYES M N. Parametric identification of nonlinear stochastic systems applied to ocean vehicle dynamics[D]. Cambridge, USA: Massachusetts Institute of Technology, 1971.
|
[40] |
HWANG W Y. Application of system identification to ship maneuvering[D]. Massachusetts Institute of Technology, 1980.
|
[41] |
秦操. 基于无迹卡尔曼滤波的船舶运动数学模型辨识[J]. 舰船科学技术, 2021, 43(1): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202101017.htm
QIN C. Parameter identification for ship mathematical model based on unscented Kalman filter[J]. Ship Science and Technology, 2021, 43(1): 89-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202101017.htm
|
[42] |
ZHENG J, YAN D, YAN M, et al. An unscented Kalman filter online identification approach for a nonlinear ship motion model using a self-navigation test[J]. Machines, 2022, 10(5): 312-320. doi: 10.3390/machines10050312
|
[43] |
WANG S, WANG L, IM N, et al. Real-time parameter identification of ship maneuvering response model based on nonlinear Gaussian filter[J]. Ocean Engineering, 2022(247): 110471.
|
[44] |
ARAKI M, SADAT-HOSSEINI H, SANADA Y, et al. Estimating maneuvering coefficients using system identification methods with experimental, system-based, and CFD free-running trial data[J]. Ocean Engineering, 2012(51): 63-84.
|
[45] |
WANG N, ER M J, HAN M. Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks[J]. IEEE Transactions on Cybernetics, 2015, 45(12): 2732-2743.
|
[46] |
LUO W. Parameter identifiability of ship manoeuvring mod-eling using system identification[J]. Mathematical Problems in Engineering, 2016(1): 1-10.
|
[47] |
LUO W, LI X. Measures to diminish the parameter drift in the modeling of ship manoeuvring using system identification[J]. Applied Ocean Research, 2017(67): 9-20.
|
[48] |
SUTULO S, SOARES CARLOS G. An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests[J]. Ocean Engineering, 2014(79): 10-25.
|
[49] |
SAJEDI Y, BOZORG M. Robust estimation of hydrodynamic coefficients of an AUV using Kalman and H∞ filters[J]. Ocean Engineering, 2019(182): 386-394.
|
[50] |
XU H, SOARES CARLOS G. Vector field path following for surface marine vessel and parameter identification based on LS-SVM[J]. Ocean Engineering, 2016(113): 151-161.
|
[51] |
JIANG Y, WANG X G, ZOU Z J, et al. Identification of coupled response models for ship steering and roll motion using support vector machines[J]. Applied Ocean Research, 2021(110): 102607.
|
[52] |
WANG Z, ZOU Z, SOARES CARLOS G. Identification of ship manoeuvring motion based on nu-support vector machine[J]. Ocean Engineering, 2019(183): 270-281.
|
[53] |
ISERMANN R, MUENCHHOF M. Identification of dynamic systems: An introduction with applications[M]. Berlin: Springer, 2011
|
[54] |
任泽裕, 王振超, 柯尊旺, 等. 多模态数据融合综述[J]. 计算机工程与应用, 2021, 57(18): 49-64. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202118006.htm
REN Z Y, WANG Z C, KE Z W, et al. Survey of multimodal data fusion[J]. Computer Engineering and Applications, 2021, 57(18): 49-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202118006.htm
|
[55] |
王文飒, 梁军, 陈龙, 等. 基于深度强化学习的协同式自适应巡航控制[J]. 交通信息与安全, 2019, 37(3): 93-100. doi: 10.3963/j.issn.1674-4861.2019.03.012
WANG W F, LIANG J, CHEN L, et al. Collaborative adaptive cruise control based on deep reinforcement learning[J]. Journal of Transport Information and Safety, 2019, 37(3): 93-100. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.03.012
|