Citation: | YE Qing, ZHAO Cong, ZHU Yifan, YU Shanchuan. An Analysis of the Impact of Time Delay of Fusion Modes for Point Clouds from Cooperative Road Vehicle Systems on Autonomous Driving[J]. Journal of Transport Information and Safety, 2023, 41(4): 72-79. doi: 10.3963/j.jssn.1674-4861.2023.04.008 |
[1] |
许庆, 王嘉伟, 王建强, 等. 网联通信时延下的混合队列控制特性分析[J]. 交通信息与安全, 2021, 39(1): 128-136.
XU Q, WANG J W, WANG J Q, et al. A performance analysis of mixed platoon control under communication delay[J]. Journal of Transport Information and Safety, 2021, 39(1): 128-136. (in Chinese)
|
[2] |
陈志军, 张晶明, 熊盛光, 等. 智能网联车辆生态驾驶研究现状及展望[J]. 交通信息与安全. 2022, 40(4): 13-25.
CHEN Z J, ZHANG J M, XIONG S G, et al. A review on research status and trends of eco-driving on intelligent connected vehicles[J]. Journal of Transport Information and Safety, 2022, 40(4): 13-25. (in Chinese)
|
[3] |
ARNOLD E, DIANATI M, DE TEMPLE R, et al. Cooperative perception for 3D object detection in driving scenarios using infrastructure sensors[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1852-1864.
|
[4] |
ZHOU Y, TUZEL O. VoxelNet: End-to-end learning for point cloudbased 3D object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, United States: IEEE, 2018.
|
[5] |
LANG A H, VORA S, CAESAR H, et al. Pointpillars: Fast encoders for object detection from point clouds[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, United States: IEEE, 2019.
|
[6] |
QI C R, SU H, MO K, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, Hawaii, United States: IEEE, 2017.
|
[7] |
LI Y, BU R, SUN M, et al. Pointcnn: Convolution on x-transformed points[J]. Advances in Neural Information Processing Systems, 2018(31): 828-838.
|
[8] |
THOMA RS, ANDRICH C, GALDO G, et al. Cooperative passive coherent location: a promising 5G service to support road safety[J]. IEEE Communications Magazine, 2019, 57 (9): 86-92.
|
[9] |
CHEN Q, TANG S, YANG Q, et al. Cooper: Cooperative perception for connected autonomous vehicles based on 3D point clouds[C]. 39th International Conference on Distributed Computing Systems, Dallas, United States: IEEE, 2019.
|
[10] |
CHEN Q, MA X, TANG S, et al. F-Cooper: Feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds[C]. 4th ACM/IEEE Symposium on Edge Computing, Washington, D. C., United States: ACM/IEEE, 2019.
|
[11] |
XU R, XIANG H, XIA X, et al. Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication[C]. International Conference on Robotics and Automation(ICRA), Philadelphia, United States: IEEE, 2022.
|
[12] |
XU R, TU Z, XIANG H, et al. CoBEVT: Cooperative bird's eye view semantic segmentation with sparse transformers[J]. ProceedingsofMachine Learning Research, 2023, 205: 989-1000.
|
[13] |
XU R, XIANG H, TU Z, et al. V2x-vit: Vehicle-to-everything cooperative perception with vision transformer[C]. European Conference on Computer Vision, Tel Aviv, Israel: Springer, 2022.
|
[14] |
TSUKADA M, OI T, ITO A, et al. AutoC2X: Open-source software to realize V2X cooperative perception among autonomous vehicles[C]. IEEE 92nd Vehicular Technology Conference, Victoria, BC, Canada: IEEE, 2020.
|
[15] |
GHOSH A, MAEDER A, BAKER M, et al. 5G evolution: A view on 5G cellular technology beyond 3GPP release 15[J]. IEEE Access, 2019, 7: 127639-127651.
|
[16] |
HARTLEY R, GHAFFARI M, EUSTICE R M, et al. Contact-aided invariant extended Kalman filtering for robot state estimation[J]. The International Journal of Robotics Research, 2020, 39(4): 402-430.
|
[17] |
KOTHARI P, KREISS S, ALAHI A. Human trajectory forecasting in crowds: a deep learning perspective[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (7): 7386-7400.
|
[18] |
ZHAO C, SONG A, DU Y, et al. TrajGAT: A map-embedded graph attention network for real-time vehicle trajectory imputation of roadside perception[J]. Transportation Research Part C: Emerging Technologies, 2022, 142: 103787.
|
[19] |
GUO J, CARRILLO D, TANG S, et al. CoFF: Cooperative spatial feature fusion for 3D object detection on autonomous vehicles[J]. IEEE Internet of Things Journal, 2021, 8(14): 11078-11087.
|
[20] |
CAESAR H, BANKITI V, LANG AH, et al. Nuscenes: A multimodal dataset for autonomous driving[C]. IEEE Conference on Computer Vision and Pattern Recognition, Washington, D. C., United States: IEEE, 2020.
|