Citation: | AI Yi, YU Yingxue, ZHONG Qingwei, HAN Xun, WAN Qifeng. Multi-scale Protected Zone Models and an Improved Velocity Obstacle Method for Aircraft Swarms[J]. Journal of Transport Information and Safety, 2024, 42(2): 49-58. doi: 10.3963/j.jssn.1674-4861.2024.02.005 |
[1] |
吴闯洋, 胡小兵, 马霁. 基于涟漪扩散算法的航空器滑行路径优化[J]. 计算机仿真, 2023, 40(12): 87-92.
WU C Y, HU X B, MA J. Aircraft glide path optimisation based on ripple diffusion algorithm[J]. Computer Simulation, 2023, 40(12): 87-92. (in Chinese)
|
[2] |
李萌. TBO模式下航空器四维航迹规划技术[D]. 唐山: 华北理工大学, 2022.
LI M. Aircraft four-dimensional trajectory planning technology in TBO mode[D]. Tangshan: North China University of Science and Technology, 2022. (in Chinese)
|
[3] |
穆朝絮, 张勇, 余瑶, 等. 基于自适应动态规划的航空航天飞行器鲁棒控制研究综述[J]. 空间控制技术与应用, 2019, 45(4): 71-79.
MU C X, ZHANG Y, YU Y, et al. Review of research on robust control of aerospace vehicles based on adaptive dynamic programming[J]. Space Control Technology and Applications, 2019, 45(4): 71-79. (in Chinese)
|
[4] |
徐文钰, 敖海跃, 刘燕斌. 基于鸽群优化算法的多无人机局部航迹重规划[J]. 战术导弹技术, 2022(1): 46-52.
XU W Y, AO H Y, LIU Y B. Multi-UAV local trace replanning based on pigeon swarm optimization algorithm[J]. Tactical Missile Technology, 2022(1): 46-52. (in Chinese)
|
[5] |
王海瑶, 安天洋. 基于Gmapping和A*算法的运输机器人系统的设计[J]. 工业控制计算机, 2024, 37(1): 19-21.
WANG H Y, AN T Y. Design of transport robot system based on Gmapping and A* algorithm[J]. Industrial Control Computer, 2024, 37(1): 19-21. (in Chinese)
|
[6] |
毕可心, 吴明功, 温祥西, 等. 基于飞行冲突网络和遗传算法的冲突解脱策略[J]. 系统工程与电子技术, 2023, 45 (5): 1429-1440.
BIKX, WUMG, WEN XX, et al. Flight conflictresolution strategy based on complex networks[J]. Systems Engineering and Electronic Technology, 2023, 45(5): 1429-1440. (in Chinese)
|
[7] |
陈可嘉, 陈琳琳. 基于改进人工势场法的动态改航规划[J]. 飞行力学, 2020, 38(5): 84-89.
CHEN K J, CHEN L L. Dynamic diversion planning based on improved artificial potential field method[J]. Flight Mechanics, 2020, 38(5): 84-89. (in Chinese)
|
[8] |
夏红伟, 李秋实, 李莉, 等. 基于hp自适应伪谱法的飞行器再入轨迹优化与制导[J]. 中国惯性技术学报, 2015, 23(6): 818-823.
XIA H W, LI Q S, LI L, et al. Aircraft re-entry trajectory optimization and guidance based on hp adaptive pseudo spectral method[J]. Chinese Journal of Inertial Technology, 2015, 23 (6): 818-823. (in Chinese)
|
[9] |
高宇, 霍静, 李文斌, 等. 基于路径规划特点的语义目标导航方法[J]. 智能系统学报, 2024, 19(1): 217-227.
GAO Y, HUO J, LI W B, et al. A semantic target navigation method based on path planning features[J]. Journal of Intelligent Systems, 2024, 19(1): 217-227. (in Chinese)
|
[10] |
WANG T, LI A, GUO D, et al. Global dynamic path planning of AGV based on fusion of improved A* algorithm and dynamic window method[J]. Sensors, 2024, 24(6): 2011. doi: 10.3390/s24062011
|
[11] |
JO H J, KIM S R, KIM J H, et al. Comparison of velocity obstacle and artificial potential field methods for collision avoidance in swarm operation of unmanned surface vehicles[J]. Journal of Marine Science and Engineering, 2022, 10(12): 2036. doi: 10.3390/jmse10122036
|
[12] |
王宏伟, 甘旭升, 韦刚, 等. 针对动态障碍物的无人机最优避撞策略[J]. 电光与控制, 2022, 29(3): 33-37.
WANG H W, GAN X S, WEI G, et al. Optimal collision avoidance strategy for UAVs to dynamic obstacles[J]. Electro Optics and Control, 2022, 29(3): 33-37. (in Chinese)
|
[13] |
高扬, 郭钒, 陈靖淞, 等. 融合空域无人机与有人机冲突风险预测与解脱[J]. 安全与环境学报, 2022, 22(6): 3288-3294.
GAO Y, GUO F, CHEN J S, et al. Conflict prediction and relief between UAV and manned aircraft in fusion airspace[J]. Journal of Safety and Environment, 2022, 22(6): 3288-3294. (in Chinese)
|
[14] |
夏生吉, 王道波, 罗东海, 等. 无人机跟踪过程中的避障问题研究[J]. 机械与电子, 2022, 40(11): 61-65, 70.
XIA S J, WANG D B, LUO D H, et al. Research on obstacle avoidance in UAV tracking processes[J]. Mechanical and Electronic, 2022, 40(11): 61-65, 70. (in Chinese)
|
[15] |
SUY, LUO J, ZHUANG J, et al. A constrained locking sweeping method and velocity obstacle based path planning algorithm for unmanned surface vehicles in complex maritime traffic scenarios[J]. Ocean Engineering, 2023, 279: 113538. doi: 10.1016/j.oceaneng.2022.113538
|
[16] |
XUE D, WU D, YAMASHITA A S, et al. Proximal policy optimization with reciprocal velocity obstacle based collision avoidance path planning for multi-unmanned surface vehicles[J]. Ocean Engineering, 2023, 273: 114005. doi: 10.1016/j.oceaneng.2023.114005
|
[17] |
黄永龙, 仲训昱. 基于改进速度障碍法的多机器人避碰规划算法[J]. 计算机工程与应用, 2012, 48(32): 47-51, 207
HUANG Y L, ZHONG X Y. Improved velocity obstacles-based collision avoidance algorithm for multiple mobile robots[J]. Computer Engineering and Applications, 2012, 48 (32): 47-51, 207. (in Chinese)
|
[18] |
ZHENG H, ZHU J, LIU C, et al. Regulation aware dynamic path planning for intelligent ships with uncertain velocity obstacles[J]. Ocean Engineering, 2023, 278: 114401. doi: 10.1016/j.oceaneng.2023.114401
|
[19] |
郭华, 郭小和. 改进速度障碍法的无人机局部路径规划算法[J]. 航空学报, 2023, 44(11): 271-281.
GUO H, GUO X H. Localized path planning algorithm for unmanned aerial vehicles with improved velocity barrier method[J]. Journal of Aeronautics, 2023, 44(11): 271-281. (in Chinese)
|
[20] |
童亮, 甘旭升, 张宏宏, 等. 考虑多因素影响的无人机碰撞风险评估[J]. 兵器装备工程学报, 2023, 44(4): 282-289.
TONG L, GAN X S, ZHANG H H, et al. Risk assessment of UAV collision considering multiple factors[J]. Journal of Ordnance Equipment Engineering, Journal of Ordnance Equipment Engineering, 2023, 44(4): 282-289. (in Chinese)
|
[21] |
彭娅婷, 温祥西, 吴明功, 等. TBO模式下基于复杂网络的空中交通复杂性分析[J]. 北京航空航天大学学报, 2023: 1-17.
PENG Y T, WEN X X, WU M G, etc. Complexity analysis of air traffic based on complex network under TBO mode[J]. Journal of Beihang University, 2023: 1-17. (in Chinese)
|
[22] |
郭钒. 融合空域大型固定翼无人机冲突风险预测与解脱[D]. 天津: 中国民航大学, 2022.
Guo F. Conflict risk prediction and resolution for large fixed-wing UAVs in converged airspace[D]. Tianjin: Civil Aviation University of China, 2022. (in Chinese)
|