Citation: | ZHANG Xiaojie, ZHANG Yanwei, ZOU Ying, YIN Xuecheng, CHENG Qiwen, SHEN Ruchao. An Improved YOLOv7 Algorithm for Workers Detection in Port Terminals[J]. Journal of Transport Information and Safety, 2024, 42(2): 67-75. doi: 10.3963/j.jssn.1674-4861.2024.02.007 |
[1] |
雷富成, 黄同, 陈俊宏. 基于事故致因理论的港口事故因素统计分析及安全管理[J]. 珠江水运, 2024(1): 64-67.
LEI F C, HUANG T, CHEN J H, et al. Statistical analysis of port accident factors and safety management based on accident causation theory[J]. Pearl River Water Transport, 2024 (1): 64-67. (in Chinese)
|
[2] |
KAUR R, SINGH S. A comprehensive review of object detection with deep learning[J]. Digital Signal Processing, 2023, 132: 103812. doi: 10.1016/j.dsp.2022.103812
|
[3] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 27th IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Columbus, OH: IEEE, 2014.
|
[4] |
GIRSHICK R. Fast r-cnn[C]. 2015 IEEE International Conference on Computer Vision(ICCV), Santiago, Chile: IEEE, 2015.
|
[5] |
REN S, HE K, GIRSHICK R, et al. Faster r-cnn: towards real-time object detection with region proposal networks[C]. 28th International Conference on Neural Information Proceeding System, Montreal, Canada: MIT Press, 2015.
|
[6] |
LIU W, ANGUELOV D, ERHAN D, et al. Ssd: single shot multibox detector[C]. 14th European Conference on Computer Vision(ECCV), Amsterdam, Netherlands: Springer, 2016.
|
[7] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA: IEEE, 2016.
|
[8] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Vancouver, Canada: IEEE, 2023.
|
[9] |
马浩为, 张笛, 李玉立, 等. 基于改进YOLOv5的雾霾环境下船舶红外图像检测算法[J]. 交通信息与安全, 2023, 41 (1): 95-104. doi: 10.3963/j.jssn.1674-4861.2023.01.010
MA H W, ZHANG D, LI Y L, et al. A ship detection for infrared images under hazy environment based on an improved YOLOv5 algorithm[J]. Journal of Transport Information and Safety, 2023, 41(1): 95-104. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.010
|
[10] |
ZHAO J, CHEN C, WANG W. Port container detection in foggy weather scenarios based on YOLOv5[C]. International Conference on Artificial Intelligence in China, Baishan, China: Springer Nature, 2023.
|
[11] |
王曼菲, 李志明. 基于深度学习的港口移动目标识别技术研究[J]. 中国水运, 2022(10): 59-60.
WANG M F, LI Z M. Research on port moving target recognition technology based on deep learning[J]. China Water Transport, 2022(10): 9-60. (in Chinese)
|
[12] |
XU X, CHEN X, WU B, et al. Exploiting high-fidelity kinematic information from port surveillance videos via a YOLO-based framework[J]. Ocean & Coastal Management, 2022, 222: 106117.
|
[13] |
郭晓晗, 彭理群, 马定辉. 基于车联网BSM数据与路侧视频融合的港口集装箱卡车碰撞危险辨识方法[J]. 交通信息与安全, 2023, 41(1): 1-12. doi: 10.3963/j.jssn.1674-4861.2023.01.001
GUO X H, PENG L Q, MA D H. A method of identifying collision risk of container trucks in port terminal areas under an integrated connected vehicle BSM and roadside video surveillance data[J]. Journal of Transport Information and Safety, 2023, 41(1): 1-12. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.001
|
[14] |
张旭仁, 高力. 基于人工智能图像识别的散货码头天网智慧平台[J]. 港口科技, 2021(6): 25-32.
ZHANG X R, GAO L. Skynet intelligent platform for bulk cargo terminal based on artificial intelligence image recognition[J]. Port Science & Technology, 2021(6): 25-32. (in Chinese)
|
[15] |
赵芷嫣, 孙维维. 虚拟电子围栏在危货港口安防中的应用[J]. 水上消防, 2021(6): 12-15.
ZHAO Z Y, SUN W W. Application of virtual electronic fence in dangerous cargo port security[J]. Maritime Safety, 2021(6): 12-15. (in Chinese)
|
[16] |
陈信强, 郑金彪, 凌峻, 等. 基于异步交互聚合网络的港船作业区域人员异常行为识别[J]. 交通信息与安全, 2022, 40(2): 22-29. doi: 10.3963/j.jssn.1674-4861.2022.02.003
CHEN X Q, ZHENG J B, LING J, et al. Detecting abnormal behaviors of workers at ship working fields via asynchronous interaction aggregation network[J]. Journal of Transport Information and Safety, 2022, 40(2): 22-29. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.003
|
[17] |
陈信强, 王美琳, 李朝锋, 等. 基于深度学习与多级匹配机制的港区人员轨迹提取[J]. 交通运输系统工程与信息, 2023, 23(4): 70-79.
CHEN X Q, WANG M L, LI C F, et al. Port staff trajectory extraction based on deep learning and multi-level matching mechanism[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4): 70-79. (in Chinese)
|
[18] |
ZHUANG J, QIN Z, YU H, et al. Task-spe-cific context decoupling for object detection[OL]. (2023-03-02)[2024-04- 26].
|
[19] |
ZHU L, WANG X, KE Z, et al. BiFormer: vision transformer with bi-level routing attention[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada: IEEE, 2023.
|
[20] |
WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and- distribute mechanism[OL]. (2023-10-23)[2024-04-30].
|
[21] |
LI H, LI J, WEI H, et al. Slim-neck by GS-Conv: a better design paradigm of detector architectures for autonomous vehicles[OL]. (2022-08-17)[2024-04-30].
|
[22] |
SILIANG M, YONG X. MPDIoU: a loss for efficient and accurate bounding box regression[OL]. (2023-07-14)[2024- 05-01].
|