Citation: | KE Yunhao, HUANG Yuchun, WU Zijian. A Geometric Information Extraction Method of Road Signs in LiDAR Point Cloud Based on RPCA[J]. Journal of Transport Information and Safety, 2024, 42(2): 76-86. doi: 10.3963/j.jssn.1674-4861.2024.02.008 |
[1] |
MATTHEW V, MEDHAT M. Deep learning for intelligent transportation systems: a survey of emerging trends[J]. IEEE Transactions on Intelligent Transportation Systems. 2020, 21(8): 3152-3168. doi: 10.1109/TITS.2019.2929020
|
[2] |
林述涛. 面向多源数据融合的交通基础设施数字化架构研究[J]. 公路交通科技, 2018, 35(9): 122-127, 145. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201809018.htm
LIN S T. Study on digital architecture of transportation infrastructure for multi-source data fusion[J]. Journal of Highway and Transportation Research and Development. 2018, 35(9): 122-127, 145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201809018.htm
|
[3] |
HUANG P D, CHENG M, CHEN Y P, et al. Traffic sign occlusion detection using mobile laser scanning point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2364-2376. doi: 10.1109/TITS.2016.2639582
|
[4] |
GARGOUM S, El-BASYOUNY K, SABBAGH J, et al. Automated highway sign extraction using lidar data[J]. Transportation Research Record, 2017, 2643(1): 1-8. doi: 10.3141/2643-01
|
[5] |
黄明, 车平文, 韦朋成. 道路点云中交通标志牌的识别提取研究[J]. 测绘科学, 2023, 48(2): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202302015.htm
HUANG M, CHE P W, WEI P C. Research on recognition and extraction of traffic signs in road point cloud[J]. Science of Surveying and Mapping, 2023, 48(2): 115-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202302015.htm
|
[6] |
GARGOUM S, El-BASYOUNY K. Automated extraction of road features using LiDAR data: a review of LiDAR applications in transportation[C]. 4th International Conference on Transportation Information and Safety(ICTIS). Banff, Canada: IEEE, 2017.
|
[7] |
瓮升霞, 陈一平. 基于移动激光点云的交通标志牌特征提取[J]. 厦门大学学报(自然科学版), 2016, 55(4): 580-585. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201604023.htm
WENG S X, CHEN Y P. Road-traffic-sign detection from mobile LiDAR point clouds[J]. Journal of Xiamen University (Natural Science), 2016, 55(4): 580-585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201604023.htm
|
[8] |
JAVANMARDI M, SONG Z, QI X. Automated traffic sign and light pole detection in mobile LiDAR scanning data[J]. IET Intelligent Transport Systems, 2019, 13(5): 803-815. doi: 10.1049/iet-its.2018.5360
|
[9] |
YANG B S, DONG Z, ZHAO G, et al. Hierarchical extraction of urban objects from mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99: 45-57. doi: 10.1016/j.isprsjprs.2014.10.005
|
[10] |
PLACHETKA C, FRICKE J, KLINGNER M, et al. DNN-based recognition of pole-like objects in LiDAR point clouds[C]. 2021 IEEE International Intelligent Transportation Systems Conference(ITSC). Indianapolis, The United States of America: IEEE, 2021.
|
[11] |
PARK J, KIM C, KIM S, et al. PCSCNet: Fast 3D semantic segmentation of LiDAR point cloud for autonomous car using point convolution and sparse convolution network[J]. Expert Systems with Applications, 2023, 212: 118815. doi: 10.1016/j.eswa.2022.118815
|
[12] |
CELESTINO O, CARLOS C, ENOC S-A. Automatic detection and classification of pole-like objects for urban cartography using mobile laser scanning data[J]. Sensors, 2017, 17(7): 1465. doi: 10.3390/s17071465
|
[13] |
HUANG P D, CHEN Y P, LI J, et al. Extraction of street trees from mobile laser scanning point clouds based on subdivided dimensional features[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Milan, Italy: IEEE, 2015.
|
[14] |
TRUONG-HONG L, LINDENBERGH R C, VERMEIJ M J. Efficient sparse street furniture extraction from mobile laser scanning point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, 48(4): 161-168.
|
[15] |
WEN C L, LI J, LUO H, et al. Spatial-related traffic sign inspection for inventory purposes using mobile laser scanning data[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(1): 27-37.
|
[16] |
朱云涛, 李飞, 胡钊政, 等. 基于3D点云语义地图表征的智能车定位[J]. 交通信息与安全, 2021, 39(6): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202106017.htm
ZHU Y T, LI F, HU Z Z, et al. A localization method for intelligent vehicles based on semantic map representation extracted from 3D cloud points[J]. Journal of Transport Information and Safety, 2021, 39(6): 143-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202106017.htm
|
[17] |
THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]. the IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019.
|
[18] |
CAND S E J, LI X, MA Y, et al. Robust principal component analysis[J]. Journal of the ACM (JACM), 2011, 58(3): 1-37.
|
[19] |
WEI M Q, WEI Z Y, ZHOU H R, et al. Agconv: Adaptive graph convolution on 3d point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9374 - 9392.
|
[20] |
HUANG Y C, MA P, JI Z, et al. Part-based modeling of pole-like objects using divergence-incorporated 3-D clustering of mobile laser scanning point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(3): 2611-2626.
|
[21] |
HE S W, LIU B l. Review of bounding box algorithm based on 3D point cloud[J]. International Journal of Advanced Network, Monitoring and Controls, 2021, 6(1): 18-23.
|